首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complete amino acid sequence of the 61-kDa calmodulin-dependent, cyclic nucleotide phosphodiesterase (CaM-PDE) from bovine brain has been determined. The native protein is a homodimer of N alpha-acetylated, 529-residue polypeptide chains, each of which has a calculated molecular weight of 60,755. The structural organization of this CaM-PDE has been investigated with use of limited proteolysis and synthetic peptide analogues. A site capable of interacting with CaM has been identified, and the position of the catalytic domain has been mapped. A fully active, CaM-independent fragment (Mr = 36,000), produced by limited tryptic cleavage in the absence of CaM, represents a functional catalytic domain. N-Terminal sequence and size indicate that this 36-kDa fragment is comprised of residues 136 to approximately 450 of the CaM-PDE. This catalytic domain encompasses a approximately 250 residue sequence that is conserved among PDE isozymes of diverse size, phylogeny, and function. CaM-PDE and its PDE homologues comprise a unique family of proteins, each having a catalytic domain that evolved from a common progenitor. A search of the sequence for potential CaM-binding sites revealed only one 15-residue segment with both a net positive charge and the ability to form an amphiphilic alpha-helix. Peptide analogues that include this amphiphilic segment were synthesized. Each was found to inhibit the CaM-dependent activation of the enzyme and to bind directly to CaM with high affinity in a calcium-dependent manner. This site is among the sequences cleaved from a 45-kDa chymotryptic fragment that has the complete catalytic domain but no longer binds CaM. These results indicate that residues located between position 23 and 41 of the native enzyme contribute significantly to the binding of CaM although the involvement of residues from additional sites is not excluded.  相似文献   

2.
Cyclic nucleotide phosphodiesterase activities (3',5'-cyclic nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) were found in the 40,000 X g supernatant fraction of homogenates of Xenopus laevis oocytes. In the supernatant, the ratio of the specific activity of cyclic AMP phosphodiesterase to that of cyclic GMP phosphodiesterase was 1.1 at the 1 micro substrate level. Two phosphodiesterase forms were isolated by centrifugation on sucrose gradient: a 3-4 S form hydrolyzing specificity cyclic AMP and a 6-7 S form hydrolyzing both cyclic nucleotides (cyclic AMP and cyclic GMP). The activity of the 6-7 S phosphodiesterase was characterized by its activation by 0.1 micro M calmodulin purified from beef pancreas in the presence of 50 micro M CA2+. The calmodulin dependence of this form was completely abolished in the presence of 1 mM ethyleneglycobis(beta-aminoethyl ether)-N-N,N',N'-tetraacetic acid (EGTA). Trifluoperazine at 0.1 mM inhibited both the freshly prepared crude enzyme and the partially purified 6-7 S form. On the other hand, no effect of cyclic GMP at 3 micro M was observed on cyclic AMP hydrolysis in the case of the supernatant or that of the partially purified phosphodiesterases. These data show the presence of a calmodulin-dependent phosphodiesterase in the soluble fraction of X. laevis oocytes.  相似文献   

3.
Multiple isozymes of cyclic nucleotide phosphodiesterases (PDEs) are expressed simultaneously in mammalian tissues. To identify and clone these PDEs, a polymerase chain reaction (PCR) strategy was developed using degenerate oligonucleotide primers designed to hybridize with highly conserved PDE DNA domains. Both known and novel PDEs were cloned from rat liver, the mouse K30a-3.3 lymphoma cell line, and a human hypothalamus cDNA library, demonstrating that these PCR primers can be used to amplify the cDNA of multiple PDE isozymes. One unique mouse PDE clone was found to encode a polypeptide identical with the corresponding portion of the bovine brain 63-kDa calmodulin-dependent PDE as reported in the companion article (Bentley, J. K., Kadlecek, A., Sherbert, C. H., Seger, D., Sonnenburg, W. K., Charbonneau, H., Novack, J. P., and Beavo, J. A. (1992) J. Biol. Chem. 267, 18676-18682). This mouse clone was used as a probe to screen a rat brain cDNA library for a full-length clone. The conceptual translation of the nucleotide sequence of the resulting rat clone has an open reading frame of 535 amino acids and maintains a high degree of homology with the bovine 63-kDa calmodulin-dependent PDE, indicating that this protein is likely to be the rat homolog of the 63-kDa calmodulin-dependent PDE. Expression of the full-length clone in Escherichia coli yielded a cGMP hydrolyzing activity that was stimulated severalfold by calmodulin. Northern blot analysis demonstrated that the mRNA encoding this PDE is highly expressed in rat brain and also in the S49.1 T-lymphocyte cell line. These data demonstrate that the PCR method described is a viable strategy to isolate cDNA clones of known and novel members of different families of PDE isozymes. Molecular cloning of these PDEs will provide valuable tools for investigating the roles of these isozymes in regulation of intracellular concentrations of the cyclic nucleotides.  相似文献   

4.
We have compared selected biophysical properties of three phosphodiesterases, from Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli. All of them belong to a recently identified family of cyclic nucleotide phosphodiesterases. Experiments elucidating folding stability, protein fluorescence, oligomerization behavior, and the effects of substrates were conducted, revealing differences between the plant and the yeast protein. According to CD spectroscopy, the latter protein exhibits an (alpha + beta) fold rather than an (alpha/beta) fold as found with CPDase (A. thaliana). The redox-dependent structural reorganization recently found for the plant protein by X-ray crystallography could not be detected by CD spectroscopy due to its only marginal effect on the total percentage of helical content. However, in the present study a redox-dependent effect was also observed for the yeast CPDase. The enzymatic activity of wild type CPDase (A. thaliana) as well as of four mutants were characterized by isothermal titration calorimetry and the results prove the requirement of all four residues of the previously identified tandem signature motif for the catalytic function. Within the comparison of the three proteins in this study, the PDase Homolog/RNA ligase (E. coli) shares more similarities with the plant than with the yeast protein.  相似文献   

5.
1. Simulations were performed using a model for cellular cyclic AMP metabolism involving a hormone-activated adenylate cyclase and two cyclic nucleotide phosphodiesterases with different Michaelis constants. 2. The response curves of cyclic AMP concentration as a function of hormone concentration were affected by regulating the phosphodiesterases. The maximum velocity of the high-affinity phosphodiesterase (V1) was important in determining the position of the response curve; when v1 was less than the maximal activity of adenylate cyclase (Vc), sigmoid response curves were readily produced. The maximum attainable concentration of cyclic AMP was determined primarily by V1 when Vc less than V1, and primarily by the activity of the low-affinity enzyme when Vc greater than V1 (V2 much greater than Vc in all cases). 3. The glucagon-stimulated adenylate cyclase and insulin-stimulated phosphodiesterase of the rat liver plasma membrane were simulated using experimentally determined values for the enzyme-kinetic parameters, and a considerable potential for regulation of the system by insulin was demonstrated. 4. Other possible functions for the regulation of phosphodiesterases are considered, in particular the value of increasing the speed of response to decreases in hormone concentration.  相似文献   

6.
1. Three phosphodiesterases that are capable of hydrolysing 3':5'-cyclic nucleotides were purified from potato tubers. 2. The phosphodiesterases were fractionated by (NH4)2SO4 precipitation and CM-cellulose chromatography. The phosphodiesterases were resolved from each other and further purified by gel filtration in high- and low-ionic-strength conditions. 3. All three enzymes lacked significant nucleotidase activity. 4. Enzymes I and II had mol. wts. 240,000 and 80,000 respectively, determined by gel filtration, whereas enzyme III showed anomalous behaviour on gel filtration, behaving as a high- or low-molecular-weight protein in high- or low-ionic-strength buffers respectively. 5. All enzymes hydrolysed 2':3'-cyclic nucleotides as well as 3':5'-cyclic nucleotides. The enzymes also had nucleotide pyrophosphatase activity, hydrolysing NAD+ and UDP-glucose to various extents. Enzymes I and II hydrolyse cyclic nucleotides at a greater rate than NAD+, whereas enzyme III hydrolyses NAD+ at a much greater rate than cyclic nucleotides. All three enzymes hydrolysed the artificial substrate bis-(p-nitro-phenyl) phosphate. 6. The enzymes do not require the addition of bivalent cations for activity. 7. Both enzymes I and II have optimum activity at pH6 with 3':5'-cyclic AMP and bis-(p-nitrophenyl) phosphate as substrates. The products of 3':5'-cyclic AMP hydrolysis were 3'-AMP and 5'-AMP, the ratio of the two products being different for each enzyme and varying with pH. 8. Theophylline inhibits enzymes I and II slightly, but other methyl xanthines have little effect. Enzymes I and II were competitively inhibited by many nucleotides containing phosphomonoester and phosphodiester bonds, as well as by Pi. 9. The possible significance of these phosphodiesterases in cyclic nucleotide metabolism in higher plants is discussed.  相似文献   

7.
8.
9.
10.
DEAE-cellulose chromatography demonstrated the presence of three peaks of cyclic nucleotide phosphodiesterase activity in the hearts of cattle during the summer and only two peaks during exposure to freezing temperatures. The hydrolysis of 10?6M cyclic AMP by peak II, the variable activity, was stimulated 160% by 10?6M cyclic GMP and was inhibited by chelation of Ca2+. Peak II activity was not a distinct enzyme but rather a mixture of activator-dependent phosphodiesterase, phosphodiesterase activator and type II cyclic AMP-dependent protein kinase.  相似文献   

11.
Particulate cyclic nucleotide phosphodiesterases of rat kidney display some distinct kinetic and regulatory properties. Only a small portion (5–10%) of the total homogenate low Km cyclic AMP phosphodiesterase activity (measured with concentrations of cyclic AMP less than l μm) is tightly associated with kidney membranes. Cyclic GMP phosphodiesterase activity (measured with 0.25–200 μm cyclic GMP) is readily detectable in these fractionated and washed membranes. Low concentrations of cyclic GMP stimulated the hydrolysis of cyclic AMP (Ka ~- 0.5 μM), an effect not noted in most other membrane systems. High concentrations of cyclic GMP (Ki ~- 450 μM) and cyclic AMP (Ki ~- 150 μM) inhibited the hydrolysis of each other noncompetitively. Solubilization of membrane bound activities by sonication or Sarkosyl L markedly alters enzyme kinetic properties and the responses to cyclic nucleotides and sulfhydryl reagents. Incubation of membrane fractions with dithiothreitol (5 mm) or storage of the membranes at 4 °C results in a change in extrapolated kinetic constants for cyclic AMP hydrolysis and an increase in the rate of denaturation at 45 °C. Our findings raise the possibility that regulation of membrane-bound cyclic nucleotide phosphodiesterase activity involves interactions with cyclic nucleotides themselves, as well as oxidation and reduction of disulfide bonds and membrane-enzyme interactions.  相似文献   

12.
Studies of various conditions and techniques used to separate cyclic nucleotide phosphodiesterases of rat kidney have demonstrated that the cationic cofactor requirements, apparent kinetic constants, number, size, and net charge of separated enzyme forms can be altered by a variety of factors. Dithiothreitol affects the number and kinetic properties of enzyme forms fractionated by isoelectric focusing and the degree of cooperativity of a low Km cyclic AMP-specific enzyme separated on Sephadex G-150. In contrast to results obtained by sucrose gradient analyses, isoelectric focusing in glycerol gradients resolved cyclic nucleotide phosphodiesterase into a single peak of activity. Inclusion of ethylene glycol in the buffers used for DEAE-cellulose chromatography greatly enhanced the yields of eluted enzymes, and the pH of the salt gradients markedly affected cyclic nucleotide phosphodiesterase elution profiles. Our results suggest (a) that in addition to protein sulfhydryl reactions, hydrophobic interactions of enzyme subunits may play an important role in the regulation of this enzyme system, (b) that cautious interpretation of results obtained from a single separation technique is required since relatively slight modifications in any one isolation procedure can result in markedly different data, and (c) that the oligomeric nature of cyclic nucleotide phosphodiesterase requires physical analysis by a variety of techniques to avoid biochemical anomalies.  相似文献   

13.
A microsomal fraction from rat liver was subfractionated into three rough endoplasmic reticulum fractions RIII, RII and RI, together with a smooth endoplasmic reticulum plus Golgi fraction. Cyclic nucleotide phosphodiesterase activity was found in all fractions. Subsequently it was shown that Golgi fractions were essentially devoid of cyclic AMP phosphodiesterase activity and the activity resided in the smooth endoplasmic reticulum fraction. The activity of the endoplasmic reticulum constituted some 20% of the homogenate activity, with the major fraction of this being associated with the RII fraction and the least with the RI fraction. With the exception of the activity of the RI fraction, which was a peripheral enzyme, all of the other enzyme activities were integral, requiring detergent or repeated freeze-thawing to effect solubilization. All of the activities appeared to be exposed at the external surface of the endoplasmic reticulum, as they were inactivated by trypsin under conditions where glucose 6-phosphatase was not. All of these activities displayed distinct sensitivities to both thermal and trypsin inactivation, yielding activity decays consistent with a single enzyme species being present in each case. The freeze-thaw-solubilized enzymes yielded single symmetrical peaks on sucrose-density-gradient centrifugation and polyacrylamide-gel electrophoresis. The sedimentation coefficients for the enzymes in the smooth-endoplasmic-reticulum-plus-Golgi, RIII, RII and RI fractions were 3.2S, 4.2S, 4.5S and 4.5S respectively. Whereas the activity in the smooth-endoplasmic-reticulum-plus-Golgi fraction exhibited normal Michaelis kinetics, those in the other fractions yielded kinetics indicative of apparent negative co-operativity. All of the enzymes exhibited low Km values towards cyclic AMP. The enzymes did not appear to be regulated by Ca2+ or calmodulin. ZnCl2 was found to be a potent non-competitive inhibitor of the enzyme in all fractions. NaF was a weak non-competitive inhibitor. The bilayer fluidizing agent benzyl alcohol exerted dissimilar effects on the enzyme activities. It is concluded that the endoplasmic reticulum displays lateral heterogeneity, with single, rather distinct, cyclic AMP phosphodiesterases being found in the different fractions.  相似文献   

14.
15.
16.
Cyclic nucleotide phosphodiesterase was extracted from intact chloroplasts and partially purified. Peak 1c activity from Sephadex G-200 was resolved by electrophoresis into two major bands (MWs 1.87 × 105 and 3.7 × 105). Both also possessed acid phosphatase, ribonuclease, nucleotidase and ATPase. The chloroplast peak 1c cyclic nueleotide phosphodiesterase was located in the envelope. Peak 1m cyclic nucleotide phosphodiesterase obtained from the microsomal fraction had a MW of 2.63 × 105. Electrophoresis separated 1m into two bands of cyclic nucleotide phosphodiesterase activity (MWs 2.63 × 105 and 1.28 × 105). Both contain ATPase, ribonuclease, nucleotidase, but not acid phosphatase. Peak 1c has high activity towards 3′:5′-cyclic AMP and 3′:5′-cyclic GMP but little towards 2′:3′-cyclic nucleotides. Peak 1m showed most activity towards 2′:3′-cyclic AMP, 2′:3′-cyclic GMP and 2′:3′-cyclic CMP with little activity towards 3′:5′-cyclic nucleotides. With 1c, 3′:5′-cyclic AMP and 3′:5′-cyclic GMP exhibit mixed-type inhibition towards one another. The 2′:3′-cyclic AMP phosphodiesterase 1m was competitively inhibited by 2′:3′-cyclic GMP. p-Chloromercuribenzoate inhibits 1c but not 1m. Electrophoresis after dissociation indicates that 1c and 1m are both enzyme complexes. After dissociation, the 1c complex but not that of 1m could be reassociated. The ribonuclease of the 1m complex hydrolyses RNA to yield 2′:3′-cyclic nucleotides as the main products. These results are compatible with the 1c cyclic nucleotide phosphodiesterase complex being involved in the metabolism of 3′:5′-cyclic AMP, and the 1m complex being concerned with RNA catabolism.  相似文献   

17.
The second messengers cAMP and cGMP exist in multiple discrete compartments and regulate a variety of biological processes in the heart. The cyclic nucleotide phosphodiesterases, by catalyzing the hydrolysis of cAMP and cGMP, play crucial roles in controlling the amplitude, duration, and compartmentalization of cyclic nucleotide signaling. Over 60 phosphodiesterase isoforms, grouped into 11 families, have been discovered to date. In the heart, both cAMP- and cGMP-hydrolyzing phosphodiesterases play important roles in physiology and pathology. At least 7 of the 11 phosphodiesterase family members appear to be expressed in the myocardium, and evidence supports phosphodiesterase involvement in regulation of many processes important for normal cardiac function including pacemaking and contractility, as well as many pathological processes including remodeling and myocyte apoptosis. Pharmacological inhibitors for a number of phosphodiesterase families have also been used clinically or preclinically to treat several types of cardiovascular disease. In addition, phosphodiesterase inhibitors are also being considered for treatment of many forms of disease outside the cardiovascular system, raising the possibility of cardiovascular side effects of such agents. This review will discuss the roles of phosphodiesterases in the heart, in terms of expression patterns, regulation, and involvement in physiological and pathological functions. Additionally, the cardiac effects of various phosphodiesterase inhibitors, both potentially beneficial and detrimental, will be discussed.  相似文献   

18.
Purified calmodulin-stimulated cyclic nucleotide phosphodiesterase from brain, a homodimer of 59-kDa subunits, was activated by limited proteolysis with trypsin, alpha-chymotrypsin, Pronase, or papain and could not be further stimulated by addition of Ca2+ and calmodulin. Proteolysis increased Vmax and had little effect on the Km for cGMP. Treatment with alpha-chymotrypsin in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) produced, sequentially, 57- and 45-kDa peptides from the bovine and 55-, 53-, and 38-kDa peptides from the ovine enzyme. This protease-treated phosphodiesterase exhibited a Stokes radius of 3.9 nm and an S20,w value of 4.55; comparison with the hydrodynamic properties observed for native enzyme (4.3 nm, 5.95 S) strongly suggests a dimeric protein of Mr approximately 80,000-90,000. The proteolyzed species does not interact significantly with calmodulin immobilized on agarose, nor does it show complex formation with 2-dimethylaminonaphthalene-1-sulfonyl-calmodulin even at micromolar concentrations of protein. Proteolysis, in the presence of calmodulin plus Ca2+, fully activated phosphodiesterase, producing the same intermediate peptides; however, final peptides from the bovine and ovine enzymes were 47 and 42 kDa, respectively, indicating a new, specific conformation of the enzyme. When EGTA was added to such incubations, these peptides were cleaved to those of the size seen when proteolysis was carried out entirely in the presence of EGTA. The initial rate of activation was increased by the presence of Ca2+ and calmodulin, suggesting that, in complex, phosphodiesterase exhibits a site with increased susceptibility to proteolysis. Since calmodulin can still interact with a fully activated form of the enzyme, it appears that retention of calmodulin binding can occur concomitantly with damage to that portion of the phosphodiesterase molecule responsible for suppression of its basal catalytic activity.  相似文献   

19.
20.
Bovine brain contains two calmodulin-dependent phosphodiesterase kinases which are separated on Sephacryl S-300 column. One of these kinases has been purified to homogeneity and shown to belong to the calmodulin-dependent protein kinase II family. Phosphorylation of the 63 kDa phosphodiesterase by this purified protein kinase results in the incorporation of 1.0 mol phosphate per mol subunit and an accompanying increase in Ca2+ concentrations required for the phosphodiesterase activation by calmodulin. The protein kinase undergoes autophosphorylation to incorporate 1.0 mol phosphate per mol of subunit of the enzyme and the autophosphorylated enzyme is active, independent of the presence of Ca2+. The autophosphorylation reaction as well as the protein kinase reaction are rendered Ca2+ independent in less than 15 seconds when approximately one mol phosphate per mol protein kinase is incorporated. The result suggests that activation of phosphodiesterase phosphorylation reaction may occur prior to the activation of phosphodiesterase and phosphatase during a cell Ca2+ flux via the protein kinase autophosphorylation mechanism.Abbreviations SDS sodium dodecyl sulfate - EGTA ethylene glycol bis (-aminoethyl ether) - N,N,N,N tetra acetic acid - EDTA ethylenediamine-tetraacetic acid - cAMP cyclic adenosine 35 monophosphate This work is supported by grants from the Medical Research Council of Canada (JHW), the Heart and Stroke Foundation of Alberta (JHW and RKS) and the Heart and Stroke Foundation of Saskatchewan (RKS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号