首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 93 毫秒
1.
首先介绍静态暗箱法气相色谱法观测确定陆地生态系统地气CO2净交换通量的基本原理和方法,然后讨论在开放式空气CO2增加(FACE)试验中应用该原理和方法观测研究大气CO2浓度升高对稻田生态系统大气CO2净交换通量的影响.因缺乏必要参数的实际观测值,本文只能根据暗箱观测值计算CO2净交换通量的最小取值NEEmin.NEEmin计算结果表明,在插秧1个月之后的水稻生长期内,大气CO2浓度升高200±40μmol·mol-1使稻田生态系统对大气CO2的净吸收约为对照的3倍.为根据暗箱观测准确确定NEE,还必须在FACE和对照条件下观测水稻植株的暗维持呼吸系数、地上生物量及根冠比动态.  相似文献   

2.
介绍了农田FACE(free airCO2 enrichment)试验中的NO和NO2 地 气交换观测方法 ,即静态暗箱采样—NO和NO2 化学发光分析法 ,并对观测结果进行了分析讨论 .此观测方法简单、易于操作 ,并可获得可靠的NO和NO2 净交换通量观测结果 .在稻麦轮作农田的旱地阶段 ,无论FACE还是对照处理 ,NO主要表现为地面净排放 ,NO2 主要表现为地面净吸收 .逐日的NO净排放不依赖于土壤温度 ,但却与土壤含水量呈线性负相关 (R2 =0 .82 ,P <0 .0 0 1) .NO2 净吸收具有明显的季节变化特征 ,逐日的净吸收通量随土壤温度和土壤含水量的变化可分别用抛物线方程拟合 (温度 :R2 =0 .74 ,P <0 .0 0 1;含水量 :R2 =0 .6 9,P <0 .0 0 1) .大气CO2 浓度升高 2 0 0± 4 0 μmol·mol-1使NO净排放减弱 19% (t 检验P =0 .0 96 ) ,NO2 净吸收减弱 10 % (t 检验P =0 .2 6 ) ,这主要是植物生长受到促进的缘故 .  相似文献   

3.
土壤动物在农田生态系统腐屑食物网中占有重要地位 ,它们参与土壤有机质分解、植物营养矿化及养分循环作用 .国内外许多研究表明 ,土壤动物对全球变化 ,尤其是大气CO2 浓度升高能够产生正向、中性和负向的影响 .土壤线虫是这类土壤动物的典型代表 ,因为它们在大多数土壤中分布是丰富的 ,而且营养类群是多样的 .应用自由空气CO2 浓度增高 (FACE)技术设计 3个处理水稻圈暴露在大气CO2 增高(浓度为 5 70 μmol·mol-1)条件下 ,3个对照水稻圈为环境中的CO2 浓度 (370 μmol·mol-1) .在中国无锡稻田生态系统水稻生长期内 ,本项研究监测了 0~ 5cm和 5~ 10cm土层中线虫营养类群 .研究结果显示 ,线虫总数、食细菌线虫、植物寄生线虫、杂食 捕食类线虫在取样深度和取样日期上存在显著差异 ;在整个取样日期中 ,FACE处理 5~ 10cm深度中线虫总数、食细菌线虫数量比对照中的高 ;在 0~ 5cm深度中 ,FACE处理食细菌线虫数量比对照中的高 ,而杂食 捕食类线虫数量则表现出相反的趋势 .食真菌线虫在FACE处理与对照之间也存在极显著差异 .  相似文献   

4.
开放式空气CO2浓度增高(FACE)对稻田土壤微生物的影响   总被引:32,自引:9,他引:32  
徐国强  李杨  史奕  黄国宏 《应用生态学报》2002,13(10):1358-1359
1 引  言公元 175 0年前 ,大气CO2 浓度基本保持 2 80 μmol·mol-1左右 .工业革命后 ,其浓度逐渐上升 ,上升速度在 196 0年后加快 ,其中 80年代以来上升最快 .从 80年代到 90年代期间 ,CO2 浓度从 330 μmol·mol-1增加到 35 4 μmol·mol-1,平均每年递增 1.8μmol·mol-1[2 ] .据IPCC(1995 )估计 ,到 2 1世纪末 ,CO2 浓度将由目前的 35 5 μmol·mol-1上升到 70 0 μmol·mol-1.这势必对整个生物界和地球生态环境产生深刻的影响 .因此 ,国内外已开展了大量的研究工作 ,获得了许多研究结…  相似文献   

5.
介绍了农田FACE(free-air CO2 enrichment)试验中的NO和NO2地气交换观测方法,即静态暗箱采样—NO和NO2化学发光分析法,并对观测结果进行了分析讨论.此观测方法简单、易于操作,并可获得可靠的NO和NO2净交换通量观测结果.在稻麦轮作农田的旱地阶段,无论FACE还是对照处理,NO主要表现为地面净排放,NO2主要表现为地面净吸收.逐日的NO净排放不依赖于土壤温度,但却与土壤含水量呈线性负相关(R2=0.82,P<0.001).NO2净吸收具有明显的季节变化特征,逐日的净吸收通量随土壤温度和土壤含水量的变化可分别用抛物线方程拟合(温度:R2=0.74,P<0.001;含水量:R2=0.69,P<0.001).大气CO2浓度升高200±40μmol·mol-1使NO净排放减弱19%(t检验P=0.096),NO2净吸收减弱10%(t检验P=0.26),这主要是植物生长受到促进的缘故.  相似文献   

6.
开放式空气CO2增高对稻田CH4和N2O排放的影响   总被引:9,自引:3,他引:9  
在FACE(free aircarbondioxideenrichment)平台上 ,采用静态暗箱 气相色谱法观测研究了大气CO2 浓度增加对稻田CH4和N2 O排放的影响 .结果表明 ,在 15 0和 2 5 0kgN·hm-2 两种氮肥水平下大气CO2 浓度增加 2 0 0 μmol·mol-1均明显促进水稻生长 ,水稻生物量积累 .大气CO2 浓度增加对 15 0和 2 5 0kgN·hm-2 两种氮肥水平下稻田CH4排放均无显著影响 ,并简要分析了与现有文献报道结果不一致的原因 .大气CO2 浓度增加也未导致 15 0和 2 5 0kgN·hm-2 两种氮肥水平下稻田N2 O排放的明显变化 ,与大多数研究结果一致 .  相似文献   

7.
开放式空气CO2浓度增高对水稻产量形成的影响   总被引:38,自引:9,他引:38  
在大田栽培条件下 ,研究开放式空气CO2 浓度增加 (FACE) 2 0 0 μmol·mol-1的处理对水稻产量及产量构成因素的影响 .结果表明 ,FACE处理对水稻株高和主茎叶片数没有明显影响 ,但使水稻生育进程加快 ,全生育期显著缩短 ,增加施N量可减缓FACE处理对水稻全生育期缩短的程度 ;FACE处理能显著增加分蘖数 ,极显著增加穗数 ,提高结实率 ,但使每穗颖花数显著减少 ;FACE处理能显著提高水稻产量 ,在高N条件下增产幅度更大 ;提高FACE处理的每穗颖花数和单位面积颖花数能极显著提高水稻产量 ,增加施N量是提高FACE处理每穗颖花数和单位面积颖花数的重要措施 .  相似文献   

8.
开放式空气CO2浓度增高对水稻冠层微气候的影响   总被引:12,自引:3,他引:12  
利用位于江苏省无锡市安镇的我国唯一的农田开放式空气CO2 浓度增高 (FACE)系统平台 ,于2 0 0 1年 8月 2 6日至 10月 13日 (水稻抽穗至成熟期 )进行水稻作物冠层微气候连续观测 ,以研究FACE对水稻冠层微气候特征的影响 .结果表明 ,FACE降低了水稻叶片的气孔导度 ,FACE与对照水稻叶片气孔导度的差异上层叶片大于下层叶片 ,生长前期大于生长后期 .FACE使白天水稻冠层和叶片温度升高 ,这种差异生长前期大于生长后期 ;但FACE对夜间水稻冠层温度的影响不明显 .在水稻旺盛生长的抽穗开花期 ,晴天正午前后FACE水稻冠层温度比对照高 1.2℃ ;从开花至成熟期 ,FACE水稻冠层白天平均温度比对照高 0 .4 3℃ .FACE对冠层空气温度也有影响 ,白天水稻冠层空气温度FACE高于对照 ,这种差异随太阳辐射增强而增大且冠层中部大于冠层顶部 ;冠层中部空气温度FACE与对照的差异 (Tface-Tambient)日最大值在 0 .4 7~ 1.2℃之间 ,而冠层顶部的Tface-Tambient日最大值在 0 .37~ 0 .8℃之间 .夜间水稻冠层空气温度FACE与对照差别不大 ,变化在± 0 .3℃之内 .而FACE对水稻冠层空气湿度无显著影响 ,表明FACE使水稻叶片气孔导度降低 ,从而削弱了植株的蒸腾降温作用 ,导致水稻冠层温度和冠层空气温度升高 ,改变了整个水稻冠层的温度环  相似文献   

9.
开放式空气CO2浓度增高对土壤线虫影响的研究现状与展望   总被引:3,自引:2,他引:3  
李琪  王朋 《应用生态学报》2002,13(10):1349-1351
大气CO2浓度增高会对生态系统产生一系列的影响,这些影响在某种程度上受到土壤动物区系的调节,本文通过论述大气CO2浓度增高对不同类型土壤中和不同生态系统中土壤线虫产生的影响,阐明了用土壤线虫作为指示生物来研究生态系统变化的意义,并提出了今后针对大气CO2浓度增高这一现象应着重围绕土壤线虫及土壤动物系优先开展的几方面研究,从而更好地指示整个生态系统的变化情况,为有效地管理农田生态系统提供依据。  相似文献   

10.
开放式空气CO2浓度增高对水稻颖花分化和退化的影响   总被引:12,自引:4,他引:12  
在大田栽培条件下 ,研究开放式空气CO2 浓度增加 (FACE) 2 0 0 μmol·mol-1的处理对水稻每穗 1、2次枝梗及其颖花的分化数、退化数、现存数及退化率的影响 .结果表明 ,FACE处理对每穗 1、2次枝梗的分化数及 1次枝梗的退化数、退化率均无显著影响 ,但使 2次枝梗的退化数、退化率显著提高 ,使 2次枝梗现存数明显减少 ;FACE处理对每穗 1、2次颖花的分化数和 1次颖花的退化数、现存数、退化率均无显著影响 ,但使每穗 2次颖花的退化数和退化率显著提高 ;FACE处理使每穗颖花现存数显著减少主要是因为FACE处理使现存 1次枝梗上 2次枝梗大量退化引起 2次颖花退化所致 ;FACE处理使 1次颖花现存数占全穗的比率显著增加 ,使 2次颖花现存数占全穗的比率显著降低 .  相似文献   

11.
开放式空气CO2浓度增高对水稻N素吸收利用的影响   总被引:14,自引:5,他引:14  
在大田栽培条件下 ,研究空气中CO2 浓度增高 (FACE) 2 0 0 μmol·mol-1对水稻N素吸收及其利用效率的影响 .结果表明 ,FACE处理使水稻不同生育时期的植株含N率显著下降 ;由于干物质生产量显著增大 ,FACE处理使水稻不同生育时期的N素累积量有所提高 ,但无显著影响 ;FACE处理能够显著提高移栽后 2 8d、抽穗期以及成熟期单位N素的干物质生产效率、单位N素的籽粒生产效率和显著提高水稻的N素收获指数 .高N处理的植株含N率、N素累积量均有所增加 ,但使N素生产效率呈现下降趋势 .  相似文献   

12.
Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia.  相似文献   

13.
The ecosystem-level carbon uptake and respiration were measured under different CO2 concentrations in the tropical rainforest and the coastal desert of Biosphere 2, a large enclosed facility. When the mesocosms were sealed and subjected to step-wise changes in atmospheric CO2 between daily means of 450 and 900 μmol mol−1, net ecosystem exchange (NEE) of CO2 was derived using the diurnal changes in atmospheric CO2 concentrations. The step-wise CO2 treatment was effectively replicated as indicated by the high repeatability of NEE measurements under similar CO2 concentrations over a 12-week period. In the rainforest mesocosm, daily NEE was increased significantly by the high CO2 treatments because of much higher enhancement of canopy CO2 assimilation relative to the increase in the nighttime ecosystem respiration under high CO2. Furthermore, the response of daytime NEE to increasing atmospheric CO2 in this mesocosm was not linear, with a saturation concentration of 750 μmol mol−1. In the desert mesocosm, a combination of a reduction in ecosystem respiration and a small increase in canopy CO2 assimilation in the high CO2 treatments also enhanced daily NEE. Although soil respiration was not affected by the short-term change in atmospheric CO2 in either mesocosm, plant dark respiration was increased significantly by the high CO2 treatments in the rainforest mesocosm while the opposite was found in the desert mesocosm. The high CO2 treatments increased the ecosystem light compensation points in both mesocosms. High CO2 significantly increased ecosystem radiation use efficiency in the rainforest mesocosm, but had a much smaller effect in the desert mesocosm. The desert mesocosm showed much lower absolute response in NEE to atmospheric CO2 than the rainforest mesocosm, probably because of the presence of C4 plants. This study illustrates the importance of large-scale experimental research in the study of complex global change issues. Received: 30 October 1998 / Accepted: 2 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号