首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efferent neuronal projections of the mesencephalic locomotor region were investigated in cats using a horseradish peroxidase retrograde axonal transport technique. It was found that neurons located within the locomotor area form ascending and descending projections to many structures of the spinal cord and the brain but that short-axon connections running to the reticular formation of the midbrain and the medulla predominate. Small numbers of long-axon fibers may merge into the locomotor strips of the medulla and the spinal cord. The locomotor regions of the two halves of the midbrain are interlinked.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 117–125, January–February, 1986.  相似文献   

2.
Efferent projections of the thalamic locomotor region were investigated using the horseradish peroxidase technique of retrograde axonal transport. This enzyme was injected into different brain structures. Function was monitored during a micro-injection into the locomotor areas. It was found that direct descending projections from the hypothalamic locomotor region lead mainly to ipsilateral structures and reach the lumbar sections of the spinal cord. Neurons of the locomotor area of the hypothalamus make their major connections with thelocus coeruleus area and the medial brainstem reticular formation. Projections were observed from the hypothalamic locomotor region to the mesencephalic locomotor area and the locomotor strip.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 817–23, November–December, 1985.  相似文献   

3.
Cerebellar connections were investigated in the turtle using a technique of unilateral application of horseradish peroxidase to the body and the nuclei of the cerebellum as well as the structures of the mesencephalic tegmentum. Findings showed that the origins of projections to the cerebellum in the caudal sections of the brain (vestibular nuclei, perihypoglossal complex, inferior reticular formation with the inferior olive, the spinal chord, etc.) were more numerous than in the rostral mesodiencephalic regions, such as the tegmentum and the pretectum. Extensive efferent cerebellar projections were detected both in the medulla, including the vestibular nuclei and nuclei of the dorsal columns of the spinal cord, and in the mesencephalic tegmentum, but were rare in the hypothalamus and the ventral somatic section of the thalamus. The conclusion was reached that the closest similarity between reptiles and mammals is seen in the afferent and efferent connections linking the cerebellum with the spinal cord, the caudal sections of the brain stem, and the mesencephalic brain structures, which have a common involvement in the regulation of muscle tonus and the coordination of locomotor activity.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 786–794, November–December, 1985.  相似文献   

4.
The location of sources of direct projections to the hypothalamic locomotor region, electrical stimulation of which in the lightly anesthetized animal induced stepping along a moving treadmill, was studied by the retrograde axonal transport of horseradish peroxidase method in the cat brain stem. Different formations in the brain stem were shown to have direct connections with hypothalamic locomotor regions on both sides. Most sources of these afferent projections were located at sites of catecholamine- (nucl. reticularis lateralis, locus coeruleus, nucl. tractus solitarii) and serotonin-containing (nucl. raphe and substantia grisea centralis) neurons, parabrachial nuclei, and various sensory nuclei. Hypothalamic locomotor regions of both sides form bilateral connections.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 353–362, May–June, 1984.  相似文献   

5.
After microinjections of horseradish peroxidase into the central tegmental area of the midbrain and centrum medianum thalami in cats, labeled neurons were found in the nucleus of the tractus solitarius, gracile and cuneate nuclei, spinal nuclei of the trigeminal nerve, the external nucleus and nucleus of the brachium of the inferior colliculus, the medial pretectal region, nucleus of the posterior commissure and stratum intermediale of the superior colliculus, and reticular structures of the medulla and pons. Comparison of the location of the sources of ascending afferent projections in the central tegmental area of the midbrain and centrum medianum thalami showed that the reticular formation receives mainly visceral projections through the nucleus of the tractus solitarius, whereas the centrum medianum thalami is innervated mainly by the system of sensory somatic nuclei.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 172–178, March–April, 1982.  相似文献   

6.
Pogosyan  V. I. 《Neurophysiology》1988,20(5):500-507
The location within the brain of labeled neurons giving rise to projections to the ventral magnocellular section of the red nucleus were investigated by means of microiontophoretically injected horseradish peroxidase. Projections were identified from many cortical, thalamic, and hypothalamic structures and from the head of the caudate nucleus, septum, globus pallidus, anterior commissure nucleus, central amygdalar nucleus, field of Forel, Zona incerta, and a number of brainstem structures. Findings in accordance with those found in the literature were obtained on projections to the red nucleus from the coronary and cruciate cortical sulci, the midbrain and dentate (lateral) cerebellar nuclei, subststantia nigra, nucleus gracilis, and the cuneate nucleus. Trajectories of retrogradely labeled fiber systems of the red nucleus are described.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 680–687, September–October, 1988.  相似文献   

7.
Sources of direct and indirect afferent connections of the caudate nucleus were investigated in cats by the retrograde axonal transport of horseradish peroxidase method. Different parts of the neocortex were shown to form different types of projections to the caudate nucleus; the sources of these projections have a laminar organization. Connections of the globus pallidus with the caudate nucleus, not previously described, were found. Among the sources of the thalamo-caudate projections, besides nuclei of the intralaminar complex, an important place is occupied by the ventral anterior and mediodorsal nuclei. After injection of horseradish peroxidase into the caudate nucleus, retrograde axonal transport of the enzyme was observed in the caudal direction, as far as cells of the locus coeruleus. ON the basis of these results a general scheme of afferent projections to the caudate nucleus is drawn up, including its connections with the spinal cord mediated by the thalamic nuclei and mesencephalic reticular formation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 146–154, March–April, 1980.  相似文献   

8.
The location of neurons forming fiber systems descending into the brain-stem reticular formation, red nucleus, and relay nuclei of the dorsal columns was studied in cats by the retrograde axonal transport of horseradish peroxidase method. The cortical projection regions, structures of the limbic system, and the hypothalamus were shown to form fiber systems that descend to the brain stem, whereas the orbito-frontal cortex is the chief source of cortico-reticular projections. The possible functional role of these descending systems in the central control of somatic and visceral functions is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 218–226, May–June, 1979.  相似文献   

9.
Location within the brain of retrogradely labeled neurons putting out projections from the dorsal magnocellularis area of the red nucleus was investigated by means of microiontophoretic injection of horseradish peroxidase into the dorsal magnocellularis area of the cat red nucleus. Projections were found from a number of hypothalamic nuclei, the centrum medianum, parafascicular and subthalamic nuclei, zone incerta, Forel's field, nucleus medialis habenulae, pontine and bulbar reticular formation, and the following midbrain structures: the central gray matter, superior colliculus, Cajal's interstitial nucleus, reticular formation, and the contralateral red nucleus. Projections were also identified proceeding from more caudally located structures: the cerebellar fastigial nucleus, facial nucleus, medial vestibular and dorsal lateral vestibular nuclei, and ventral horns of the spinal cord cervical segments. Connections between the substantia nigra and the red nucleus were clarified. Projections to the red nucleus from the cerebral cortex, interstitial and dentate (lateral) cerebellar nuclei, the nucleus gracilis and cuneate nucleus were found, confirming data presented in the literature. Bilateral trajectories of retrogradely labeled fiber systems are described.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 810–816, November–December, 1987.  相似文献   

10.
Neuronal populations which are sources of fiber tracts to the amygdala and auditory cortexin the posterior group of thalamic nuclei and adjacent structures of the cat mesencephalon were studied by the retrograde axonal transport of horseradish peroxidase method. It was shown that the peripeduncular, suprageniculate, and subparafascicular nuclei form numerous projections to the amygdala. In all parts of the posterior group of thalamic nuclei, common zones of localization of sources of ascending pathways into the amygdala and auditory cortex were demonstrated. A powerful source of projections to the amygdala from the caudal part of the medial geniculate body was discovered.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 213–224, March–April, 1984.  相似文献   

11.
In experiments with unilateral injections of horseradish peroxidase microdoses into the dorsal sites of external g. proreus. using the method of retrograde axonal transport, labeled neurons have been revealed ipsilaterally in the singular cortex of telencephalon, in amygdala and thalamic structures of the brain (n.medio-dorsal nucleus, anterior group of nuclei and intralaminar nuclei). The role of the direct projections discovered to the prefrontal cortex in the formation of emotional component of pain is discussed.  相似文献   

12.
The distribution of neurons giving rise to various descending fiber systems to brain-stem structures in the basal ganglia (including amygdaloid nuclei) and hypothalamus of the cat was studied by the retrograde axonal transport of horseradish peroxidase method. Neurons in the medial part of the central nucleus and of the magnocellular part of the basal nucleus of the amygdaloid group were shown to send axons to the dorsal hippocampus, substantia nigra, lateral part of the central gray matter, and the mesencephalalic reticular formation and also to the region of the locus coeruleus and the lateral medullary reticular formation at the level of the inferior olives. The predominant source of projections to the hypothalamus and brainstem structures is the central amygdaloid nucleus, which also sends projections to the nucleus of the tractus solitarius, the dorsal motor nucleus of the vagus nerve, and the superior cervical segments of the spinal cord. Uncrossed fiber systems descending from the basal ganglia terminate at the level of the pons, whereas uncrossed and crossed fiber systems descending from the dorsal and ventromedial hypothalamus can be traced into the spinal cord. The possible role of nuclei of the amygdaloid group, the hypothalamus, and their efferent projections in the regulation of somatic and vegetative functions and also of complex behavioral reactions is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 14–23, January–February, 1981.  相似文献   

13.
Neuronal connections were investigated in the lizard (Ophisaurus apodus) by injecting horseradish peroxidase. Reciprocal connections were found between the septum and the dorsal and mediodorsal cortex, as well as projections from the diagonal bundle nucleus and the anterior dorsolateral and dorsomedial thalamic nuclei to the septum. The most clear-cut bilateral connections were observed between the septum and the preoptic region, the hypothalamic periventricular structures, and the lateral hypothalamic region (containing dopaminergic neurons) as well as nuclei of the mamillary body. Some characteristics and the overall organization pattern of connections between the septum and other limbic system structures are reviewed.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 398–407, May–June, 1988.  相似文献   

14.
Intrabulbar connections of respiratory nuclei and the medullary reticular formation and also descending pathways from these structures in the spinal cord were studied by the retrograde horseradish peroxidase axonal transport method in cats. Neurons of the nucleus ambiguus and nucleus retroambigualis (ventral respiratory group) and of the ventrolateral part of the nucleus of the tractus solitarius (dorsal respiratory group) were shown to form direct two-way connections with each other and with the medial region of the medulla. Neurons of the pneumotaxic center send uncrossed axons to the nucleus ambiguus and to the medial medullary reticular formation. Neurons of the contralateral homonymous nucleus and neurons of the nucleus of the tractus solitarius are sources of projections of the locus coeruleus. A well developed system of direct connections was found between neurons of respiratory nuclei of the two halves of the brain. The possible role of these nuclear formations in genesis of the respiratory rhythm and regulation of the respiratory and other motor functions of the reticular formation is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 149–157, March–April, 1982.  相似文献   

15.
Arrangement and connections of mesencephalic trigeminal neurons in the rat   总被引:3,自引:0,他引:3  
The morphology of the mesencephalic trigeminal nucleus was examined microscopically in serial frozen sections. The nucleus extends over a length of about 4.5 mm, and its cell number was calculated to range from 1,000 to 1,600. 60% of the cells were located in the caudal third of the nucleus. Clustering of large unipolar cells was seen throughout the nucleus. Small spindle-shaped multipolar cells were found in the pontine part of the nucleus. The efferent connections of the mesencephalic trigeminal neurons were investigated by means of iontophoretically delivered Phaseolus vulgaris leuco-agglutinin or horseradish peroxidase after electrophysiological identification of mesencephalic trigeminal neurons. All projections were found ipsilateral to the injection site; they were confined to the trigeminal motor nucleus, especially to its lateral part, and to the dorsolateral reticular formation. The latter projection area included the supratrigeminal nucleus, the nucleus of Probst, and the parvocellular reticular zone. There were no direct projections to the facial or hypoglossal motor nuclei. It is concluded that proprioceptive input from one side is mediated polysynaptically to the bilateral oral final common-path neurons, with the exception of the ipsilateral trigeminal motoneurons.  相似文献   

16.
The cellular origin of the brainstem projections to the oculomotor nucleus in the rabbit has been investigated by using free (HRP) and lectin-conjugated horseradish peroxidase (WGA-HRP). Following injections of these tracers into the somatic oculomotor nucleus (OMC), retrogradely labeled cells have been observed in numerous brainstem structures. In particular, bilateral labeling has been found in the four main subdivisions of the vestibular complex, predominantly in the superior and medial vestibular nuclei and the interstitial nucleus of Cajal, while ipsilateral labeling was found in the rostral interstitial nucleus of the medial longitudinal fascicle (Ri-MLF), the Darkschewitsch and the praepositus nuclei. Neurons labeled only contralaterally have been identified in the following structures: mesencephalic reticular formation dorsolateral to the red nucleus, abducens internuclear neurons, group Y, several areas of the lateral and medial regions of the pontine and medullary reticular formation, ventral region of the lateral cerebellar nucleus and caudal anterior interpositus nucleus. This study provides also information regarding differential projections of some centers to rostral and caudal portions of the OMC. Thus, the rostral one-third appears to receive predominant afferents from the superior and medial vestibular nuclei, while the caudal two-thirds receive afferents from all the four vestibular nuclei. Finally, the group Y sends afferents to the middle and caudal, but not to the rostral OMC.  相似文献   

17.
Quantitative characteristics of spatial organization of neuron populations of vestibular nuclei, forming projections into the spinal cord, were obtained in experiments on guinea pigs by the retrograde axonal transport of horseradish peroxidase, injected unilaterally into the upper cervical and lower thoracic segments of the spinal cord, method. Neurons accumulating the enzyme were found ipsilaterally in the lateral vestibular nucleus and bilaterally in the descending and medial vestibular nuclei. The distribution of vestibulospinal neurons along the length of the spinal cord was studied. Neuron populations of the medial and descending vestibular nuclei whose projection regions coincide with those of fibers of the corticospinal and rubrospinal systems were discovered. The role of vestibulospinal systems in the structure of supra-segmental control of the neuronal apparatus of the spinal cord is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 353–362, May–June, 1991.  相似文献   

18.
Vestibular nucleus neurons projecting to the cat bulbar lateral reticular nucleus were revealed using horseradish peroxidase axonal transport techniques. Neurons giving rise to such projections — relatively few in number — were confined to homolateral locations and nearly all occurred within Deiter's nucleus. Large as well as small and medium-sized neurons of the vestibular nucleus projected to the lateral reticular nucleus. The part played by the vestibuloreticular projections under review in the control of motor activity is discussed.Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 147–152, March–April, 1989.  相似文献   

19.
The origin of spinal locomotor strip fibers was investigated in cats by applying electrical stimulation and the retrograde axonal horseradish peroxidase transport technique. It was found to be mainly composed of corticospinal tract fibers. Moderate numbers of reticulospinal tract and trigeminal spinal tract fibers were also observed. Descending projections from brain stem catecholaminergic neuronal groups do not pass through the test sites of the dorsolateral funiculus, nor, apparently, do they go to make up the spinal locomotor strip. Specificity of the brain stem and spinal locomotor region is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 327–335, May–June, 1989.  相似文献   

20.
Afferent connections of the nucleus lateralis posterior (NLP) of the thalamus and area 7 of the parietal cortex with the retrosplenial region of the limbic cortex and hippocampus were studied in rats with retrograde axon transport of horseradish peroxidase. It was shown that the NLP receives ipsilateral projections from area 29d neurons, while area 7 receives ipsilateral axons from area 29d and 29c neurons. It was found that associations of the retrosplenial region with associative cortex are far more pronounced than with associative thalamus. Moreover, the afferent connections of area 7 with area 29d are more numerous than with area 29c. We disclosed no projections of areas 29a and 29b to thalamoparietal system structures. In addition to neocortical input from the limbic cortex, area 7 receives afferent fibers from the archicortex; neurons situated in hippocampus area CA1 are the source of these projections.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy Academy of Sciences, Leningrad. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 647–655, November–December, 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号