首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mechanisms involved in the progressive malfunction of the trabecular meshwork (TM) in glaucoma are not yet understood. To study age-related changes in human TM cells, we isolated primary TM cell cultures from young (ages 9, 14, and 25) and old (ages 66, 70, and 73) donors, and compared levels of oxidized proteins, autofluorescence, proteasome function, and markers for cellular senescence. TM cells from old donors showed a 3-fold increase in oxidized proteins and a 7.5-fold decrease of proteasome activity. Loss of proteasome function was not associated with decreased proteasome content but with partial replacement of the proteolytic subunit PSMB5 with the inducible subunit LMP7. Cells from old donors also demonstrated features characteristic of cellular senescence associated with phosphorylation of p38MAPK but only a modest increase in p53. These data suggest that age-related proteasome inhibition and cellular senescence could contribute to the pathophysiological alterations of the TM in glaucoma.  相似文献   

3.
4.
5.
Human bone marrow-derived mesenchymal stem cells (hBMMSCs) must differentiate into osteogenic cells to allow for successful bone regeneration. In this study, we investigated the effects of different combinations of three soluble osteogenic differentiation-inducing factors [L-ascorbic acid (AC), beta-glycerophosphate (betaG), and bone morphogenic protein-2 (BMP-2)] and the presence of a hydroxyapatite (HA) substrate on hBMMSC osteogenic differentiation in vitro. hBMMSCs were cultured in medium containing various combinations of the soluble factors on culture plates with or without HA coating. After 7 days of culture, alkaline phosphatase (ALP) activity, calcium deposition, and osteoprotegerin (OPG) and osteopontin (OPN) expression were measured. The effects of individual and combined factors were evaluated using a factorial analysis method. BMP-2 predominantly affected expression of early markers of osteogenic differentiation (ALP and OPG). HA had the highest positive effect on OPN expression and calcium deposition. The interaction between AC, betaG, and HA had the second highest positive effect on ALP activity.  相似文献   

6.
Arsenic trioxide (ATO) as an anti-tumor drug could induce differentiation and apoptosis in tumor cells. Mesenchymal stem cells (MSCs) play important roles in the hematogenesis of bone marrow. Many reports have shown that the disorder of MSC adipogenic and osteogenic differentiation occurs in some diseases. However, reports about the effects of ATO on MSCs are limited. In this study, we found that 1 μM ATO promoted MSC senescence mainly through p21, although it had no effect on apoptosis at this dose. Furthermore, ATO promoted adipogenic differentiation, but inhibited osteogenic differentiation in MSCs. Our study also showed that CCAAT/enhancer-binding protein alpha C/EBPα and peroxisome proliferator-activated receptor gamma PPARγ might be involved in the regulation of adipogenic and osteogenic differentiation induced by ATO. Our results indicated that ATO may exert an anti-tumor effect by influencing bone marrow micro-environment. Moreover, it may regulate the adipogenic and osteogenic differentiation of MSCs.  相似文献   

7.
Caveolin‐1 is a scaffolding protein of cholesterol‐rich caveolae lipid rafts in the plasma membrane. In addition to regulating cholesterol transport, caveolin‐1 has the ability to bind a diverse array of cell signaling molecules and regulate cell signal transduction in caveolae. Currently, there is little known about the role of caveolin‐1 in stem cells. It has been reported that the caveolin‐1 null mouse has an expanded population of cells expressing stem cell markers in the gut, mammary gland, and brain, suggestive of a role for caveolin‐1 in stem cell regulation. The caveolin‐1 null mouse also has increased bone mass and an increased bone formation rate, and its bone marrow‐derived mesenchymal stem cells (MSCs) have enhanced osteogenic potential. However, the role of caveolin‐1 in human MSC osteogenic differentiation remains unexplored. In this study, we have characterized the expression of caveolin‐1 in human bone marrow derived MSCs. We show that caveolin‐1 protein is enriched in density gradient‐fractionated MSC plasma membrane, consisting of ~100 nm diameter membrane‐bound vesicles, and is distributed in a punctate pattern by immunofluoresence localization. Expression of caveolin‐1 increases in MSCs induced to undergo osteogenic differentiation, and siRNA‐mediated knockdown of caveolin‐1 expression enhances MSC proliferation and osteogenic differentiation. Taken together, these findings suggest that caveolin‐1 normally acts to regulate the differentiation and renewal of MSCs, and increased caveolin‐1 expression during MSC osteogenesis likely acts as a negative feedback to stabilize the cell phenotype. J. Cell. Biochem. 113: 3773–3787, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
11.
Multipotential adult mesenchymal stem cells (MSCs) are able to differentiate along several known lineages, and lineage commitment is tightly regulated through specific cellular mediators and interactions. Recent observations of a low/high bone-mass phenotype in patients expressing a loss-/gain-of-function mutation in LRP5, a coreceptor of the Wnt family of signaling molecules, suggest the importance of Wnt signaling in bone formation, possibly involving MSCs. To analyze the role of Wnt signaling in mesenchymal osteogenesis, we have profiled the expression of WNTs and their receptors, FRIZZLEDs (FZDs), and several secreted Wnt inhibitors, such as SFRPs, and examined the effect of Wnt 3a, as a representative canonical Wnt member, during MSC osteogenesis in vitro. WNT11, FZD6, SFRP2, and SFRP3 are upregulated during MSC osteogenesis, while WNT9A and FZD7 are downregulated. MSCs also respond to exogenous Wnt 3a, based on increased beta-catenin nuclearization and activation of a Wnt-responsive promoter, and the magnitude of this response depends on the MSC differentiation state. Wnt 3a exposure inhibits MSC osteogenic differentiation, with decreased matrix mineralization and reduced alkaline phosphatase mRNA and activity. Wnt 3a treatment of fully osteogenically differentiated MSCs also suppresses osteoblastic marker gene expression. The Wnt 3a effect is accompanied by increased cell number, resulting from both increased proliferation and decreased apoptosis, particularly during expansion of undifferentiated MSCs. The osteo-suppressive effects of Wnt 3a are fully reversible, i.e., treatment prior to osteogenic induction does not compromise subsequent MSC osteogenesis. The results also showed that sFRP3 treatment attenuates some of the observed Wnt 3a effects on MSCs, and that inhibition of canonical Wnt signaling using a dominant negative TCF1 enhances MSC osteogenesis. Interestingly, expression of Wnt 5a, a non-canonical Wnt member, appeared to promote osteogenesis. Taken together, these findings suggest that canonical Wnt signaling functions in maintaining an undifferentiated, proliferating progenitor MSC population, whereas non-canonical Wnts facilitate osteogenic differentiation. Release from canonical Wnt regulation is a prerequisite for MSC differentiation. Thus, loss-/gain-of-function mutations of LRP5 would perturb Wnt signaling and depress/promote bone formation by affecting the progenitor cell pool. Elucidating Wnt regulation of MSC differentiation is important for their potential application in tissue regeneration.  相似文献   

12.
Osteogenesis is a complex series of events involving the differentiation of mesenchymal stem cells to generate new bone. In this study, we examined the effect of pulsed electromagnetic fields (PEMFs) on cell proliferation, alkaline phosphatase (ALP) activity, mineralization of the extracellular matrix, and gene expression in bone marrow mesenchymal stem cells (BMMSCs) during osteogenic differentiation. Exposure of BMMSCs to PEMFs increased cell proliferation by 29.6% compared to untreated cells at day 1 of differentiation. Semi‐quantitative RT‐PCR indicated that PEMFs significantly altered temporal expression of osteogenesis‐related genes, including a 2.7‐fold increase in expression of the key osteogenesis regulatory gene cbfa1, compared to untreated controls. In addition, exposure to PEMFs significantly increased ALP expression during the early stages of osteogenesis and substantially enhanced mineralization near the midpoint of osteogenesis. These results suggest that PEMFs enhance early cell proliferation in BMMSC‐mediated osteogenesis, and accelerate the osteogenesis. Bioelectromagnetics 31:209–219, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
A functional relationship between the growth and the progression of events associated with osteogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs) has been a fundamental question, which remains unclear. This study is aimed at investigating the effects of low temperature and lactate individually, and in combination on the growth and osteogenic differentiation of hAMSCs. It was shown that the growth of hAMSCs in growth medium was inhibited by both low-cultivation temperature and lactate. By extending culture period at low temperature, cell growth declined gradually, while the ALP expression and calcium deposition increased progressively. However, the growth of hAMSCs induced in osteogenic medium at 37°C was markedly enhanced by additional lactate. The ALP expression and calcium deposition, on the contrary, were significantly depressed. Furthermore, the synergistic actions of long-term low temperature and lactate resulted in more intense inhibition on both cell growth and osteogenic differentiation. Therefore, these findings may imply the co-contribution of the culture environment on the selective manipulation on the growth capacity and osteogenic differentiation potential of hAMSCs.  相似文献   

16.
17.
Periodontal ligament stem cells (PDLSCs) have mesenchymal-stem-cells-like qualities, and are considered as one of the candidates of future clinical application in periodontal regeneration therapy. Enamel matrix derivative (EMD) is widely used in promoting periodontal regeneration. However, the effects of EMD on the proliferation and osteogenic differentiation of human PDLSCs grown on the Ti implant surface are still no clear. Therefore, this study examined the effects of EMD on human PDLSCs in vitro. Human PDLSCs were isolated from healthy participants, and seeded on the surface of Ti implant disks and stimulated with various concentrations of EMD. Cell proliferation was determined with Cell Counting Kit-8 (CCK-8). The osteogenic differentiation of PDLSCs was evaluated by the measurement of alkaline phosphatase (ALP) activity, Alizarin red staining, and real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. The results indicated that EMD at concentrations (5–60 µg/ml) increased the viability and proliferation of PDLSCs. The treatment with 30 and 60 µg/ml of EMD significantly elevated ALP activity, augmented mineralized nodule formation and calcium deposition, and upregulated the mRNA and protein levels of Runx-2 and osteocalcin (OCN) in the PDLSCs grown on the Ti surface. Further investigation found that EMD treatment did not change the protein levels of phosphatidylinositol-3-kinase (PI3K), p-PI3K, Akt and mTOR, but significantly upregulated the phosphorylated levels of Akt and mTOR. Collectively, these results suggest that EMD stimulation can promote the proliferation and osteogenic differentiation of PDLSCs grown on Ti surface, which is possibly associated with the activation of Akt/mTOR signaling pathway.  相似文献   

18.
Periodontitis is one of the main causes of tooth loss and has been confirmed as the sixth complication of diabetes. Metformin promotes the osteogenic differentiation of stem cells. Periodontal ligament stem cells (PDLSCs) are the best candidate stem cells for periodontal tissue regeneration. Herein, we aimed to identify the effects of metformin on the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro. PDLSCs were isolated by limiting dilution, and their characteristics were assessed by colony formation assay and flow cytometry. Cell counting and migration assays were used to investigate the effects of metformin on proliferation and migration. The osteogenic differentiation ability of PDLSCs was detected by alkaline phosphatase (ALP) activity and Alizarin Red S staining. Gene and protein levels of osteogenesis‐related markers were determined by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot analysis, respectively. Metformin treatment at 10 μM did not affect PDLSC proliferation, while at 50 and 100 μM, metformin time‐dependently enhanced PDLSC proliferation and significantly increased cell numbers after 5 and 7 days of stimulation (P < 0.05). In addition, 50 μM metformin exhibited a maximal effect on migration, ALP activity, and mineral deposition (P < 0.05). Furthermore, 50 μM metformin significantly upregulated the gene expression levels of ALP, BSP, OPN, OCN, and Runx2 and the protein expression of ALP and Runx2 (P < 0.05). In summary, our study confirms that metformin facilitates the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro and could be used as a new strategy for periodontal tissue regeneration.  相似文献   

19.
《Tissue & cell》2016,48(5):425-431
Lithium Chloride (LiCl) has been used as a canonical Wnt pathway activator due to its ability to inhibit a glycogen synthase kinase-3. The aim of the present study was to investigate the effect of LiCl on cell proliferation and osteogenic differentiation in stem cells isolated from human exfoliated deciduous teeth (SHEDs). SHEDs were isolated and cultured in media supplemented with LiCl at 5, 10, or 20 mM. The results demonstrated that LiCl significantly decreased SHEDs colony forming unit ability in a dose dependent manner. LiCl significantly enhanced the percentage of cells in the sub G0 phase, accompanied by a reduction of the percentage of cells in the G1 phase at day 3 and 7 after treatment. Further, LiCl markedly decreased OSX and DMP1 mRNA expression after treating SHEDs in an osteogenic induction medium for 7 days. In addition, no significant difference in alkaline phosphatase enzymatic activity or mineral deposition was found. Together, these results imply that LiCl influences SHEDs behavior.  相似文献   

20.
The purpose of our study was to examine the influence of hypoxia on proliferation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). The mononuclear cells were separated by density gradient centrifugation from human umbilical cord blood and then, respectively, cultured under hypoxia (5 % O2) or normoxia (20 % O2). Their cell morphology, cell surface markers, β-galactosidase staining, cell growth curve, DNA cycle, and the expression of hypoxia-inducible factor-1α (HIF-1α) were evaluated. We found that hypoxia, in part via HIF-1α, improved the proliferation efficiency, and prevented senescence of hUCB-MSCs without altering their morphology and surface markers. These results demonstrated that hypoxia provides a favorable culture condition to promote hUCB-MSCs proliferation in vitro, which is a better way to obtain sufficient numbers of hUCB-MSCs for research and certainly clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号