首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonucleotide flavor enhancers such as inosine monophosphate (IMP) and guanosine monophosphate (GMP) provide umami taste, similarly to glutamine. Japanese cuisine frequently uses soup stocks containing these nucleotides to enhance umami. We quantified 18 types of purines (nucleotides, nucleosides, and purine bases) in three soup stocks (chicken, consommé, and dried bonito soup). IMP was the most abundant purine in all umami soup stocks, followed by hypoxanthine, inosine, and GMP. The IMP content of dried bonito soup was the highest of the three soup stocks. We also evaluated the effects of these purines on extracellular and intracellular purine metabolism in HepG2 cells after adding each umami soup stock to the cells. An increase in inosine and hypoxanthine was evident 1 h and 4 h after soup stock addition, and a low amount of xanthine and guanosine was observed in the extracellular medium. The addition of chicken soup stock resulted in increased intracellular and extracellular levels of uric acid and guanosine. Purine metabolism may be affected by ingredients present in soups.  相似文献   

2.
Uric acid (UA) levels in mouse blood have been reported to range widely from 0.1 μM to 760 μM. The aim of this study was to demonstrate false in vitro and in vivo elevations of UA levels in mouse blood. Male ICR mice were anesthetized with pentobarbital (breathing mice) or sacrificed with overdose ether (non-breathing mice). Collected blood was dispensed into MiniCollect® tubes and incubated in vitro for 0 or 30 min at room temperature. After separation of plasma or serum, the levels of UA and hypoxanthine were determined using HPLC. From the non-incubated plasma of breathing mice, the true value of UA level in vivo was 13.5 ± 1.4 μM. However, UA levels in mouse blood increased by a factor of 3.9 following incubation in vitro. This “false in vitro elevation” of UA levels in mouse blood after blood sampling was inhibited by allopurinol, a xanthine oxidase inhibitor. Xanthine oxidase was converted to UA in mouse serum from hypoxanthine which was released from blood cells during incubation. Plasma UA levels from non-breathing mice were 19 times higher than those from breathing mice. This “false in vivo elevation” of UA levels before blood sampling was inhibited by pre-treatment with phentolamine, an α-antagonist. Over-anesthesia with ether might induce α-vasoconstriction and ischemia and thus degrade intracellular ATP to UA. For the accurate measurement of UA levels in mouse blood, the false in vitro and in vivo elevations of UA level must be avoided by immediate separation of plasma after blood sampling from anesthetized breathing mice.  相似文献   

3.
Hypoxia in brain may lead to cell death by apoptosis and necrosis. Concomitant is the formation of purine nucleosides, e.g. adenosine, a powerful endogenous neuroprotectant. Despite vigorous studies, many aspects of the mechanisms involved in purine-based protection are still unclear. In this study, we wanted to investigate the effect of purine nucleosides on cellular responses to chemical hypoxia. O(2)-sensitive neuronal pheochromocytoma (PC12)-cells, which are widely used as a model system for sympathetic ganglion-like neurons, were subjected to chemical hypoxia induced with rotenone, an inhibitor of mitochondrial complex I. Adenosine and its relatives guanosine and inosine were tested for their neuroprotective capability to improve neurite outgrowth and viability. In addition, cell lysates were analyzed for mitogen-activated-protein-kinases (MAPK) activation by anti-active and anti-total MAPKinase immunoblotting. Adenosine, guanosine and inosine significantly inhibited the loss of viability after hypoxic insult. In combination with NGF, purine nucleosides also partially rescued neurite outgrowth. The MEK-1/-2 inhibitor PD098059 inhibited purine nucleoside-mediated protection up to 85.23% and also markedly decreased neurite formation induced by NGF and purine nucleosides in hypoxic cells. Immunoblot analysis revealed a strong activation of MAPKinase upon incubation of cells with adenosine, guanosine or inosine. In combination with NGF an additive effect was observed. Results suggested that activation of the MAPKinase pathway plays a vital role in purine nucleoside-mediated protection of neuronal cells following hypoxic insult.  相似文献   

4.
1. Nucleosides potentially participate in the neuronal functions of the brain. However, their distribution and changes in their concentrations in the human brain is not known. For better understanding of nucleoside functions, changes of nucleoside concentrations by age and a complete map of nucleoside levels in the human brain are actual requirements.2. We used post mortem human brain samples in the experiments and applied a recently modified HPLC method for the measurement of nucleosides. To estimate concentrations and patterns of nucleosides in alive human brain we used a recently developed reverse extrapolation method and multivariate statistical analyses.3. We analyzed four nucleosides and three nucleobases in human cerebellar, cerebral cortices and in white matter in young and old adults. Average concentrations of the 308 samples investigated (mean±SEM) were the following (pmol/mg wet tissue weight): adenosine 10.3±0.6, inosine 69.5±1.7, guanosine 13.5±0.4, uridine 52.4±1.2, uracil 8.4±0.3, hypoxanthine 108.6±2.0 and xanthine 54.8±1.3. We also demonstrated that concentrations of inosine and adenosine in the cerebral cortex and guanosine in the cerebral white matter are age-dependent.4. Using multivariate statistical analyses and degradation coefficients, we present an uneven regional distribution of nucleosides in the human brain. The methods presented here allow to creation of a nucleoside map of the human brain by measuring the concentration of nucleosides in microdissected tissue samples. Our data support a functional role for nucleosides in the brain.  相似文献   

5.
ATP and adenosine are well-known neuroactive compounds. Other nucleotides and nucleosides may also be involved in different brain functions. This paper reports on extracellular concentrations of nucleobases and nucleosides (uracil, hypoxanthine, xanthine, uridine, 2'-deoxycytidine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenosine) in response to sustained depolarisation, using in vivo brain microdialysis technique in the rat thalamus. High-potassium solution, the glutamate agonist kainate, and the Na(+)/K(+) ATPase blocker ouabain were applied in the perfusate of microdialysis probes and induced release of various purine and pyrimidine nucleosides. All three types of depolarisation increased the level of hypoxanthine, uridine, inosine, guanosine and adenosine. The levels of measured deoxynucleosides (2'-deoxycytidine, 2'-deoxyuridine and thymidine) decreased or did not change, depending on the type of depolarisation. Kainate-induced changes were TTX insensitive, and ouabain-induced changes for inosine, guanosine, 2'-deoxycytidine and 2'-deoxyuridine were TTX sensitive. In contrast, TTX application without depolarisation decreased the extracellular concentrations of hypoxanthine, uridine, inosine, guanosine and adenosine.Our data suggest that various nucleosides may be released from cells exposed to excessive activity and, thus, support several different lines of research concerning the regulatory roles of nucleosides.  相似文献   

6.
《Insect Biochemistry》1991,21(4):407-412
Purine interconversions leading to urate synthesis were studied over 60 min in isolated fat bodies from freshly collected Nasutitermes walkeri using 14C-hypoxanthine, 14C-inosine and 14C-guanosine. All were taken up, inosine the most efficiently at an initial rate of 0.06 ± 0.009 nmol/min/mg protein. The major purines, nucleosides and nucleotides were separated and examined for radioactivity. Based on uptake data, 1.3% of 14C-hypoxanthine, 0.3% of 14C-inosine and 37% of 14C-guanosine were converted to urate while 3% of the 14C-guanosine taken up was also salvaged to nucleotides. Feeding experiments with allopurinol showed that there was no significant production of urate via guanine, guanosine and adenosine. Incorporation data indicated the presence of the enzymes purine nucleoside phosphorylase, xanthine dehydrogenase, guanase and that neither inosine nor hypoxanthine could be salvaged.  相似文献   

7.
Wang C  Pan Y  Zhang QY  Wang FM  Kong LD 《PloS one》2012,7(6):e38285
Hyperuricemia, hyperlipidemia and inflammation are associated with diabetic nephropathy. The NLRP3 inflammasome-mediated inflammation is recently recognized in the development of kidney injury. Urate and lipid are considered as danger signals in the NLRP3 inflammasome activation. Although dietary flavonoid quercetin and allopurinol alleviate hyperuricemia, dyslipidmia and inflammation, their nephroprotective effects are currently unknown. In this study, we used streptozotocin (STZ)-induced diabetic nephropathy model with hyperuricemia and dyslipidemia in rats, and found over-expression of renal inflammasome components NLRP3, apoptosis-associated speck-like protein and Caspase-1, resulting in elevation of IL-1β and IL-18, with subsequently deteriorated renal injury. These findings demonstrated the possible association between renal NLRP3 inflammasome activation and lipid accumulation to superimpose causes of nephrotoxicity in STZ-treated rats. The treatment of quercetin and allopurinol regulated renal urate transport-related proteins to reduce hyperuricemia, and lipid metabolism-related genes to alleviate kidney lipid accumulation in STZ-treated rats. Furthermore, quercetin and allopurinol were found to suppress renal NLRP3 inflammasome activation, at least partly, via their anti-hyperuricemic and anti-dyslipidemic effects, resulting in the amelioration of STZ-induced the superimposed nephrotoxicity in rats. These results may provide a basis for the prevention of diabetes-associated nephrotoxicity with urate-lowering agents such as quercetin and allopurinol.  相似文献   

8.
It was shown earlier that a variety of vertebrate cells could grow indefinitely in sugar-free medium supplemented with either uridine or cytidine at greater than or equal to 1 mM. In contrast, most purine nucleosides do not support sugar-free growth for one of the following reasons. The generation of ribose-1-P from nucleoside phosphorylase activity is necessary to provide all essential functions of sugar metabolism. Some nucleosides, e.g. xanthosine, did not support growth because they are poor substrates for this enzyme. De novo pyrimidine synthesis was inhibited greater than 80% by adenosine or high concentrations of inosine, e.g. 10 mM, which prevented growth on these nucleosides; in contrast, pyrimidine synthesis was inhibited only marginally on 1 mM inosine or guanosine, but normal growth was only seen on 1 mM inosine, not on guanosine. The inhibition of de novo adenine nucleotide synthesis prevented growth on guanosine, since guanine nucleotides could not be converted to adenine nucleotides. Guanine nucleotides were necessary for this inhibition of purine synthesis, since a mutant blocked in their synthesis grew normally on guanosine. De novo purine synthesis was severely inhibited by adenosine, inosine, or guanosine, but in contrast to guanosine, adenosine and inosine could provide all purine requirements by direct nucleotide conversions.  相似文献   

9.
A comparison was made of the uptake mechanisms of selected purine bases and nucleosides by axenically grown Entamoeba histolytica. Adenine, adenosine, and guanosine were taken up, in part, by a “carrier”-mediated system. Guanine, hypoxanthine, and inosine entered amoebas via diffusion. Inhibitor studies support the presence of individual transport sites for adenine-adenosine and adenosine-guanosine. Additional sites for transport of adenine, adenosine, and guanosine are implied by “non-productive binding” involving guanine, hypoxanthine, and inosine. Uptake of adenine, adenosine, and guanosine was reduced by iodoacetate and N-ethylmaleimide. Ribose failed to inhibit uptake of purine nucleosides.  相似文献   

10.
The uptake of purine nucleosides (guanosine and hypoxanthine) and bases (guanine, hypoxanthine and adenine) and their incorporation into nucleotides were studied in enterocytes isolated from fed and 3-day fasted guinea pig jejunum. Both total uptake and synthesis of nucleotides were greater for these purines in the fasted, as compared to the fed state for the first 5 min, when the initial substrate concentration in the medium was 10 microM. Increased uptake did not result from a change in the relative distribution of synthesized nucleotides between the fed and fasted states. Reduced catabolism was observed in the medium by enterocytes from fasted as compared to fed animals after 1 min of incubation with both inosine and guanosine. Preincubation of enterocytes with allopurinol (a xanthine oxidase inhibitor) decreased total uptake but increased the formation of IMP from hypoxanthine. Xanthine oxidase activity measured in mucosa from fasted guinea pigs was lower than that from fed animals (6.29 vs. 9.30 nmol/min per mg protein, respectively). However, activities of the salvage enzymes adenine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase were not significantly different between the fed and fasted states. These data show that allopurinol treatment, and mucosal atrophy resulting from fasting, decrease xanthine oxidase activity and increase nucleotide synthesis from exogenous substrates in enterocytes from the guinea-pig small intestine, suggesting a regulatory function of mucosal xanthine oxidase in purine salvage by the small intestine.  相似文献   

11.
12.
Purine nucleotide synthesis and interconversion were examined over a range of purine base and nucleoside concentrations in intact N4 and N4TG (hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient) neuroblastoma cells. Adenosine was a better nucleotide precursor than adenine, hypoxanthine or guanine at concentrations greater than 100 μM. With hypoxanthine or guanine, N4TG cells had less than 2% the rate of nucleotide synthesis of N4 cells. At substrate concentrations greater than 100 μM the rates for deamination of adenosine and phosphorolysis of guanosine exceeded those for any reaction of nucleotide synthesis. Labelled inosine and guanosine accumulated from hypoxanthine and guanine, respectively, in HGPRT-deficient cells and the nucleosides accumulated to a greater extent in N4 cells indicating dephosphorylation of newly synthesized IMP and GMP to be quantitatively significant. A deficiency of xanthine oxidase, guanine deaminase and guanosine kinase activities was found in neuroblastoma cells. Hypoxanthine was a source for both adenine and guanine nucleotides, whereas adenine or guanine were principally sources for adenine (>85%) or guanine (>90%) nucleotides, respectively. The rate of [14C]formate incorporation into ATP, GTP and nucleic acid purines was essentially equivalent for both N4 and N4TG cells. Purine nucleotide pools were also comparable in both cell lines, but the concentration of UDP-sugars was 1.5 times greater in N4TG than N4 cells.  相似文献   

13.
The yeast YLR209c (PNP1) gene encodes a protein highly similar to purine nucleoside phosphorylases. This protein specifically metabolized inosine and guanosine. Disruption of PNP1 led to inosine and guanosine excretion in the medium, thus showing that PNP1 plays an important role in the metabolism of these purine nucleosides in vivo.  相似文献   

14.
Homogeneous preparations of purine nucleoside phosphorylase (EC 2.4.2.1) from rabbit kidney, spleen, liver and embryos were studied. The enzyme preparations do not differ in electrophoretic mobility. The molecular weight of the enzyme obtained from various sources was determined by gel filtration on Sephadex G-150 superfine and is about 90-92 kD. The enzyme subunits are identical in terms of molecular weight, as can be evidenced from sodium dodecyl sulfate polyacrylamide gel electrophoresis (Mr approximately 31 kD). The pH optima of these enzyme preparations for guanosine and xanthosine phosphorolysis are 6.2 and 5.7, respectively. The isoelectric point of purine nucleoside phosphorylase from rabbit kidney was determined in the presence of 9 M urea and is equal to 5.55. The enzyme is the most stable at pH 7.7; it is specific towards hypoxanthine and guanine nucleosides as well as towards xanthosine, but does not cleave adenine nucleosides. The Km values for guanosine and inosine are 1.4.10(-4) M and 1.2.10(-4) M, respectively. The enzyme does not catalyze the ribosyl transfer reaction in the absence of Pi.  相似文献   

15.
We have extended peak-shift method for measuring purine bases to make it suitable for other purine-related compounds. We optimized the reactions of the purine metabolism enzymes 5′-nucleotidase (EC 3.1.3.5), purine nucleoside phosphorylase (PNP) (EC 2.4.2.1), xanthine oxidase (XO) (EC 1.17.3.2), urate hydroxylase (EC 1.7.3.3), adenosine deaminase (ADA) (EC 3.5.4.4), and guanine deaminase (EC 3.5.4.3) by determining their substrate specificity and reaction kinetics. These enzymes eliminate the five purine base peaks (adenine, guanine, hypoxanthine, xanthine, and uric acid) and four nucleosides (adenosine, guanosine, inosine, and xanthosine). The bases and nucleosides can be identified and accurately quantified by comparing the chromatograms before and after treatment with the enzymes. Elimination of the individual purine compound peaks was complete in a few minutes. However, when there were multiple substrates, such as for XO, and when the metabolites were purine compounds, such as for PNP and ADA, it took longer to eliminate the peaks. The optimum reaction conditions for the peak-shift assay methods were an assay mixture containing the substrate (10 μL, 0.1 mg/mL), the combined enzyme solution (10 μL each, optimum concentration), and 50 mM sodium phosphate (up to 120 μL, pH 7.4). The mixture was incubated for 60 minutes at 37°C. This method should be suitable for determining the purine content of a variety of samples, without interference from impurities.  相似文献   

16.
Salmonella enterica serovar Typhimurium normally salvage nucleobases and nucleosides by the action of nucleoside phosphorylases and phosphoribosyltransferases. In contrast to Escherichia coli, which catabolizes xanthosine by xanthosine phosphorylase (xapA), Salmonella cannot grow on xanthosine as the sole carbon and energy source. By functional complementation, we have isolated a nucleoside hydrolase (rihC) that can complement a xapA deletion in E. coli and we have overexpressed, purified and characterized this hydrolase. RihC is a heat stable homotetrameric enzyme with a molecular weight of 135 kDa that can hydrolyze xanthosine, inosine, adenosine and uridine with similar catalytic efficiency (k(cat)/Km=1 to 4 x 10(4) M(-1)s(-1)). Cytidine and guanosine is hydrolyzed with approximately 10-fold lower efficiency (k(cat)/Km=0.7 to 1.2 x 10(3) M(-1)s(-1)) while RihC is unable to hydrolyze the deoxyribonucleosides thymidine and deoxyinosine. The Km for all nucleosides except adenosine is in the mM range. The pH optimum is different for inosine and xanthosine and the hydrolytic capacity (k(cat)/Km) is 5-fold higher for xanthosine than for inosine at pH 6.0 while they are similar at pH 7.2, indicating that RihC most likely prefers the neutral form of xanthosine.  相似文献   

17.
The uptake of adenine, guanine, guanosine and inosine by stored red cells was investigated in whole blood and red cell resuspensions at initial concentrations of 0.25, 0.5 and 0.75 mM for adenine and 0.5 mM for the other additives using a rapid ion-exchange chromatographic microanalysis of purines and nucleosides in plasma and whole blood. Increasing adenine concentrations from 0.25 to 0.75 mM in blood elevated the adenine uptake from 0.3 up to 0.8 mmol/l red cells during 2 hours after collecting blood. The intra-/extracellular distribution ratio changed from 1 : 1.3 to 1: 1.7. Some 2 hours after withdrawing blood into CPD--solution with purines and nucleosides the uptake of adenine and guanine resulted in 40 per cent and 70 per cent respectively and of guanosine and inosine in 80 and 90 per cent respectively. The replacement of plasma by a resuspending solution gave the same uptake rates for purines and nucleosides. The nucleosides were rapidly split to purines and R-1-P and disappeared from blood during one week. Adenine and guanine were utilized to 80 to 90 per cent only after 3 weeks. During the same period the utilization of guanine was smaller by 40 per cent than that of adenine due to the different activity of the purine nucleoside phosphorylase for these substrates. The plasma of all analyzed blood samples contained hypoxanthine and inosine, but guanine and guanosine were detected only in those samples to which one of them was added. After 3 weeks of storage the highest concentration of hypoxanthine was found in CPD-AI blood with 600 microM in plasma and the highest concentration of synthesized inosine in CPD-AG blood with a concentration of 100 microM in plasma. Three ways of utilization of purines by stored red cells were discussed : the synthesis of nucleotide monophosphates, the formation of nucleosides, and the deamination. The portions of these ways change during storage. The most effective concentrations of adenine and guanosine in stored blood seems to be 0.25 and 0.5 mM respectively. The full utilization of the nucleoside requires the addition of inorganic phosphate.  相似文献   

18.
1. Pentatrichomonas hominis was found incapable of de novo synthesis of purines. 2. Pentatrichomonas hominis can salvage adenine, guanine, hypoxanthine, adenosine, guanosine and inosine, but not xanthine for the synthesis of nucleotides. 3. HPLC tracing of radiolabelled purines or purine nucleosides revealed that adenine, adenosine and hypoxanthine are incorporated into adenine nucleotides and IMP through a similar channel while guanine and guanosine are salvaged into guanine nucleotides via another route. There appears to be no direct interconversion between adenine and guanine nucleotides. Interconversion between AMP and IMP was observed. 4. Assays of purine salvage enzymes revealed that P. hominis possess adenosine kinase; adenosine, guanosine and inosine phosphotransferases; adenosine, guanosine and inosine phosphorylases and AMP deaminase.  相似文献   

19.
ABSTRACT

Using Caco-2 cells and our previously developed high-performance liquid chromatography method for quantification of purine bases, nucleosides, and nucleotides, we evaluated cellular purine transport and uptake. The analytes were separated using YMC-Triart C18 column with gradient elution. We used Caco-2 cells as intestinal model cells and monitored purine transport across a monolayer for 2 h. The degree of change of purine concentrations in the permeate was very slight; however, it was possible to simultaneously determine these parameters for all purines because of our method's high sensitivity. In the present study, the purine bases (adenine, guanine, hypoxanthine, and xanthine) showed a relatively high permeability as compared with the nucleosides (adenosine, guanosine, inosine, and xanthosine). Increased concentration of metabolites in the permeate was also observed following the addition of purines. In a cell uptake assay, both the cell culture medium (extracellular) and the cells extracted from Caco-2 with acetonitrile:water (7:3) (intracellular) were measured. The additional nucleoside did not increase significantly within the cells. On the other hand, we observed that nucleotide, such as ATP, increased in the cell in a time-dependent manner following the addition of nucleoside. The additional nucleosides were considered to be rather recycled via the salvage pathway than metabolized to purine bases and/or uric acid in the cell. Such differences might have affected the increase in the serum uric acid levels depending on purine form.  相似文献   

20.
Clones resistant to 0.15% guanosine were isolated from rat hepatoma cells. Analysis of cell extracts from these clones revealed the presence of normal levels of purine nucleoside phosphorylase activity but less than 2% of the parental level of hypoxanthine-guanine phosphoribosyltransferase activity. In addition, the resistant cells transported guanosine and inosine at less than 2% of the rate of sensitive cells. Despite this low rate of transport, the resistant cells were still capable of metabolizing extracellular guanosine and inosine. The ability of the resistant cells to metabolize guanosine and inosine without requiring their direct transport lends support to the existence of a membrane localized form of purine nucleoside phosphorylase which metabolizes extracellular purine nucleosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号