首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies have recently supported the emerging role of OX40/OX40L interaction in atherosclerosis. The mechanism of OX40/OX40L interaction may be related to a variety of signal pathways. The most important signal pathway involves the activation of phospholipase C (PLC) which induces diacylglycerol–protein kinase C (DAG–PKC) and the inositol trisphosphate (IP3)–intracellular free calcium ([Ca2+]i) pathway. The aim of this work was to investigate whether OX40–OX40L interaction can stimulate the PLC signal pathway in human umbilical vein endothelial cells (HUVEC). The DAG and IP3 level in HUVEC were measured by radio-enzymatic assay. The activity of PKC was detected by its ability to transfer phosphate from [γ-32P]ATP to lysine-rich histone. [Ca2+]i concentrations were measured by flow cytometric analysis. Results showed that the DAG level was markedly increased in a concentration-dependent, biphasic manner in HUVEC induced by OX40. The early phase was rapid, peaking at 30 s. The late phase reached the maximum level at 15 min and decayed slowly. OX40 increased PKC activity in a dose-dependent manner with two peaks at 40–50 s and 12–16 min, then decreased slowly, yet maintained a high level for at least 30 min. PKC activity was mainly in cytosol at rest and translocated from cytosol to membrane when stimulated by OX40. Similarly, OX40-induced rapid IP3 formation coincided with the peak of DAG level. Moreover, OX40 also induced peak [Ca2+]i responses including the rapid transient phase and the sustained phase. Anti-OX40L antibody significantly suppressed OX40-induced DAG–PKC and IP3–[Ca2+]i signal pathway activation in HUVEC. In conclusion, the data suggested that OX40–OX40L interaction induced a robust stimulation of phospholipase C signal transduction pathway in HUVEC.  相似文献   

2.
We previously reported the emerging role of CD137–CD137L interaction in inflammation and atherosclerosis. The mechanism of CD137–CD137L interaction may be related to a variety of signaling pathways. The most important signaling pathway involves the activation of phospholipase C(PLC) which induces the diacylglycerol–protein kinase C(DAG–PKC) and the inositol trisphosphate-intracellular free calcium (IP3-[Ca2+]i) pathway. In the current study, we investigated whether CD137–CD137L interaction can stimulate the PLC signaling pathway in human umbilical vein endothelial cells (HUVEC). The diacylglycerol (DAG) and inositol trisphosphate (IP3) levels in HUVEC were measured by radioenzymatic assay. The activity of protein kinase (PKC) was detected by its ability to transfer phosphate from [γ-32P]ATP to lysine-rich histone. The [Ca2+]i concentrations were measured by flow cytometric analysis. The DAG level and PKC activity were increased in a concentration-dependent, biphasic manner in HUVEC induced by anti-CD137. PKC activity was mainly in the cytosol at rest, and then translocated to the membrane when stimulated by anti-CD137. Similarly, rapid IP3 formation induced by anti-CD137 coincided with the peak of the DAG level. Moreover, anti-CD137 induced peak [Ca2+]i responses including the rapid transient phase and the sustained phase. However, anti-CD137L suppressed the activation of the DAG–PKC and IP3-[Ca2+]i signaling pathway, which was stimulated by anti-CD137 in HUVEC. In conclusion, the data suggested that CD137–CD137L interaction induces robust activation of the PLC signaling pathway in HUVEC.  相似文献   

3.
In order to clarify the interaction of calcium ion with casein, the volume change associated with the interaction was measured by dilatometric procedures. When CaCl2 was added to the casein solutions at neutral pH, a volume increase occurred and reached a constant saturated value of about 700 ml per 106 g protein with increasing CaCl2 concentrations for whole-, αs- and β-casein solutions, but there was no volume change for κ-casein solution. On the other hand, the binding of calcium ion to the casein fractions was determined by a gel filtration procedure at pH 6.0 to 9.0. The number of Ca2+ ions bound to the caseins increased with the CaCl2 concentration and pH value, and the relative order of binding capacities for the caseins was: αs-casein > whole-casein > β-casein > κ-casein.

It was found that the volume changes obtained by the dilatometry were smaller than the calculated volume increases based on the assumption that these are caused by the binding of Ca2+ ion to the caseins. Therefore it is necessary to introduce another factor which reduces the volume increase due to the Ca2+ ion binding in order to reasonably explain the measured volume changes. At present it is presumed that there occurs the unfolding of peptide chain of casein molecule on Ca2+ ion binding, which has been known to decrease the volume of the protein solution.  相似文献   

4.
In order to separate the net effect of growth at elevated [CO2] on stomatal conductance (gs) into direct and acclimatory responses, mid‐day values of gs were measured for plants grown in field plots in open‐topped chambers at the current ambient [CO2], which averaged 350 μmol mol?1 in the daytime, and at ambient + 350 μmol mol?1[CO2] for winter wheat, winter barley, potato and sorghum. The acclimatory response was determined by comparing gs measured at 700 μmol mol?1[CO2] for plants grown at the two [CO2]. The direct effect of increasing [CO2] from 350 to 700 μmol mol?1 was determined for plants grown at the lower concentration. Photosynthetic rates were measured concurrently with gs. For all species, growth at the higher [CO2] significantly reduced gs measured at 700 μmol mol?1[CO2]. The reduction in gs caused by growth at the higher [CO2] was larger for all species on days with low leaf to air water vapour pressure difference for a given temperature, which coincided with highest conductances and also the smallest direct effects of increased [CO2] on conductance. For barley, there was no other evidence for stomatal acclimation, despite consistent down‐regulation of photosynthetic rate in plants grown at the higher [CO2]. In wheat and potato, in addition to the vapour pressure difference interaction, the magnitude of stomatal acclimation varied directly in proportion to the magnitude of down‐regulation of photosynthetic rate through the season. In sorghum, gs consistently exhibited acclimation, but there was no down‐regulation of photosynthetic rate. In none of the species except barley was the direct effect the larger component of the net reduction in gs when averaged over measurement dates. The net effect of growth at elevated [CO2] on mid‐day gs resulted from unique combinations of direct and acclimatory responses in the various species.  相似文献   

5.
The nature of binding between manganese ions and morphine was studied using Fourier transform proton nuclear magnetic resonance techniques. Proton relaxation times in the presence of Mn(II) ions were determined together with their temperature dependence. Slow exchange conditions were observed for the NCH3 group, while fast exchange conditions applied for all the other protons. The rotational correlation time of the complex was approximated by that of the free morphine molecule, as measured by selective and nonselective proton relaxation rate measurements. The distances between the metal ion and proton nuclei of morphine were evaluated on the basis of an association constant, measured from water proton spin-lattice relaxation rate binding studies. The results indicate that the metal binds directly to the two oxydryls with Kass = 9.7 × 10?3.The rate constant for the interaction of Mn(II) with the opiate is 2.25 × 104 sec?1 at 27°C, as determined from the temperature dependence of longitudinal relaxation rate of the NCH3 group.  相似文献   

6.
Projected depletions in the stratospheric ozone layer will result in increases in solar ultraviolet-B radiation (290–320 nm) reaching the earth's surface, These increases will likely occur in concert with other environmental changes such as increases in atmospheric carbon dioxide concentrations. Currently very little information is available on the effectiveness of UV-B radiation within a CO2-enriched atmosphere, and this is especially true for trees. Loblolly pine (Pinus taeda L.) seedlings were grown in a factorial experiment at the Duke University Phytotron with either 0, 8.8 or 13.8 kJ m−2 of biologically effective UV-B radiation (UV-BBE). The CO2 concentrations used were 350 and 650 μmol mol−1. Measurements of chlorophyll fluorescence were made at 5-week intervals and photosynthetic oxygen evolution and leaf pigments were measured after 22 weeks, prior to harvest. The results of this study demonstrated a clear growth response to CO2 enrichment but neither photosynthetic capacity nor quantum efficiency were altered by CO2. The higher UV-B irradiance reduced total biomass by about 12% at both CO2 levels but biomass partitioning was altered by the interaction of CO2 and UV-B radiation. Dry matter was preferentially allocated to shoot components by UV-B radiation at 350 μmol mol−1 CO2 and towards root components at 650 μmol mol−1 CO2. These subtle effects on biomass allocation could be important in the future to seedling establishment and competitive interactions in natural as well as agricultural communities.  相似文献   

7.
Soil water deficits are likely to influence the response of crop growth and yield to changes in atmospheric CO2 concentrations (Ca), but the extent of this influence is uncertain. To study the interaction of water deficits and Ca on crop growth, the ecosystem simulation model ecosys was tested with data for diurnal gas exchange and seasonal wheat growth measured during 1993 under high and low irrigation at Ca= 370 and 550 μmol mol?1 in the Free Air CO2 Enrichment (FACE) experiment near Phoenix, AZ. The model, supported by the data from canopy gas exchange enclosures, indicated that under high irrigation canopy conductance (gc) at Ca= 550 μmol mol?1 was reduced to about 0.75 that at Ca= 370 μmol mol?1, but that under low irrigation, gc was reduced less. Consequently when Ca was increased from 370 to 550 μmol mol?1, canopy transpiration was reduced less, and net CO2 fixation was increased more, under low irrigation than under high irrigation. The simulated effects of Ca and irrigation on diurnal gas exchange were also apparent on seasonal water use and grain yield. Simulated vs. measured seasonal water use by wheat under high irrigation was reduced by 6% vs. 4% at Ca= 550 vs. 370 μmol mol?1 but that under low irrigation was increased by 3% vs. 5%. Simulated vs. measured grain yield of wheat under high irrigation was increased by 16% vs. 8%, but that under low irrigation was increased by 38% vs. 21%. In ecosys, the interaction between Ca and irrigation on diurnal gas exchange, and hence on seasonal crop growth and water use, was attributed to a convergence of simulated gc towards common values under both Ca as canopy turgor declined. This convergence caused transpiration to decrease comparatively less, but CO2 fixation to increase comparatively more, under high vs. low Ca. Convergence of gc was in turn attributed to improved turgor maintenance under elevated Ca caused by greater storage C concentrations in the leaves, and by greater rooting density in the soil.  相似文献   

8.
Solvent1H T?11 values at magnetic fields between 2.3 × 10?4 and 1.2 T were measured for ethyleneglycol solutions of manganese(II), cobalt(II), nickel(II), copper(II), and gadolinium(III) salts in the temperature range ?10–+40 °C. The T?11 profiles were interpreted on the ground of the available theories according to whether the electronic relaxation times or the rotational times are the correlation times for the interaction. The comparison among systems experiencing different correlation times and electronic structures (metal ions in water, ethyleneglycol, and in proteins) allowed us to test the general theoretical approach regarding nuclear relaxation times in paramagnetic systems. Such theoretical approaches allow researchers to extract structural parameters and information on the correlation times and dynamic processes operative in the various investigated systems.  相似文献   

9.
Metabolic scope and its utilization in relation to feeding and activity were measured in individual and grouped zebrafish (weight range, 430–551 mg) at 24° C by respirometry. Mean maximum metabolic rate, induced by swimming to exhaustion, Rmax(i), was 1223 (s.d. , 157) mg O2, kg?1 h?1 for individuals. Standard metabolic rate, Rs. was 364 mg O2 kg?1 h?1, as estimated by extrapolating to zero activity from measurements of unfed, spontaneously active individuals. Mean routine metabolic rate, Rrout, of individuals was 421 (s.d. , 58) mg O2, kg-1 h-1. The mean voluntary maximum metabolic rate, Rmax(v), following transfer of minimally exercised fish to the respirometer, was 1110 (s.d. , 83) mg O2 kg ?1 h?1 for groups of six fish, and was not significantly different from the value measured for individuals, 1066 (s.d. , 122) mg O2, kg?1 h?1. Grouped fish acclimated to the respirometer more slowly than individual fish and exhibited significantly higher Rrout, apparently a result of greater social interaction and activity in groups. Mean Rrout for groups was 560 (s.d. , 78) mg O2, kg?1 h?1. While groups of zebrafish fed a ration of 5% wet body weight day?1 exhibited consistently higher metabolic rates than fish fed rations of 2.5% wet body weight day?1 the high ration group still used only a maximum of 77% of the metabolic scope. Zebrafish of the size studied do not appear to demonstrate a high degree of conflict in utilization of metabolic scope by different respiratory components. The metabolic rates measured for zebrafish are among the highest yet measured for fish of similar size and at similar temperatures.  相似文献   

10.
Summary The apical membrane of rabbit urinary bladder can be functionally removed by application of nystatin at high concentration if the mucosal surface of the tissue is bathed in a saline which mimics intracellular ion concentrations. Under these conditions, the tissue is as far as the movement of univalent ions no more than a sheet of basolateral membrane with some tight junctional membrane in parallel. In this manner the Na+ concentration at the inner surface of the basolateral membrane can be varied by altering the concentration in the mucosal bulk solution. When this was done both mucosal-to-serosal22Na flux and net change in basolateral current were measured. The flux and the current could be further divided into the components of each that were either blocked by ouabain or insensitive to ouabain. Ouabain-insensitive mucosal-to-serosal Na+ flux was a linear function of mucosal Na+ concentration. Ouabain-sensitive Na+ flux and ouabain-sensitive, Na+-induced current both display a saturating relationship which cannot be accounted for by the presence of unstirred layers. If the interaction of Na+ with the basolateral transport process is assumed to involve the interaction of some number of Na+ ions,n, with a maximal flux,M max, then the data can be fit by assuming 3.2 equivalent sites for interaction and a value forM max of 287.8pm cm–2 sec–1 with an intracellular Na concentration of 2.0mm Na+ at half-maximal saturation. By comparing these values with the ouabain-sensitive, Na+-induced current, we calculate a Na+ to K+ coupling ratio of 1.40±0.07 for the transport process.  相似文献   

11.
Abstract

The peptide encoded in the 5″ to 3″ direction by rat vasopressin complementary RNA, rat PVA (H-Ser-Ser-Trp-Ala-Val-Leu-Glu-Val-Ala-OH) and the corresponding bovine PVA (H-Ala-Pro-Trp-Ala-Val-Leu-Glu-Val-Ala-OH) were investigated with respect to their interaction with [8-arginine] vasopressin (AVP) and V2 vasopressin receptor binding and function. Rat or bovine PVA did neither affect the binding of the hormone to the V2 receptor of bovine kidney membranes and LLC-PK1 pig kidney cells nor influence the AVP-induced cAMP-production in LLC-PK1 cells. Rat PVA was further investigated by the use of vasopressin-specific polyclonal and monoclonal antibodies with differnt affinity and epitope specifity. Consistent with receptor binding studies no inhibition of [3H]AVP-binding in fluid- or solid-phase antibody binding tests after preincu-bation with PVA was found. Direct interaction of rat PVA and [3H]AVP measured on solid surface was not observed in contrast to specific binding of the hormone with NP II and antibodies. In our study no evidence for an interaction of AVP and its antisense peptides was found.  相似文献   

12.
Singh  J.S.  Singh  Smita  Raghubanshi  A.S.  Singh  Saranath  Kashyap  A.K.  Reddy  V.S. 《Plant and Soil》1997,196(1):115-121
Methane uptake was measured for two consecutive years for four forest and one savanna sites in a seasonally dry tropical region of India. The soils were nutrient-poor and well drained. These sites differed in vegetational cover and physico-chemical features of the soil. There were significant differences in CH4 consumption rates during the two years (mean 0.43 and 0.49 mg m-2 h-1), and at different sites (mean 0.36 to 0.57 mg m-2 h-1). The mean uptake rate was higher (P < 0.05) in dry seasons than in the rainy season at all the sites. There was a significant season and site interaction, indicating that the effect of different seasons differed across the sites. There was a positive relation between soil moisture and CH4 uptake rates during summer (the driest period) and a negative relation during the rest of the year. The results suggested that seasonally dry tropical forests are a strong sink for CH4, and C and N status of soils regulates the strength of the sink in the long term.  相似文献   

13.
Zhang ZS  Lu YG  Liu XD  Feng JH  Zhang GQ 《Genetica》2006,127(1-3):295-302
Pollen abortion is one of the major reasons causing the inter-subspecific F1 hybrid sterility in rice and is due to allelic interaction of F1 pollen sterility genes. The microsporogenesis and microgametogenesis of Taichung 65 and its three F1 hybrids were comparatively studied by using techniques of differential interference contrast microscopy, semi-thin section light microscopy, epifluorescence microscopy and TEM. The results showed that there were differences among the cytological mechanisms of pollen abortion due to allelic interaction at the three F1 pollen sterility loci. The allelic interaction at S-a locus resulted in microspores unable to extend the protoplasm membrane with the enlargement of the microspore at the middle microspore stage and finally producing empty abortive pollen. The allelic interaction at S-b locus caused asynchronous development of microspores at the middle microspore stage producing stainable abortive pollen. The allelic interaction at S-c locus mainly led to the non-dissolution of the generative cell wall and finally caused the hybrid F1 mainly producing stainable abortive pollen. Genotypic identification indicated that the abortive pollen were those with S j allele.  相似文献   

14.
The intracellular fate of radiolabeled T3 taken up by mice hepatocytes in vivo was determined at specific time intervals (2–120 min) after injection by quantitative electron microscopic radioautography. Injection of a 200-fold excess of unlabeled T3 together with [125I]-T3 resulted in a more than 90% inhibition of radioactivity detected in hepatocytes. A simple grain density (GD) analysis of radioautograms revealed that a specific labeling (GD > 1) was displayed by only five cell compartments: the plasma membrane, lipid droplets, mitochondria, nuclear envelope and nuclear matrix whereas other compartments were not labeled. Labeled compartments showed distinct changes in the pattern of labeling over time: the plasma membrane was labeled only 2 min after T3 injection, whereas labeling of the nuclear envelope was high at 2 min, decreased at 15 min and progressively increased to maximal measured levels at 120 min. After a lag time of 30 min, nuclear matrix labeling increased progressively with time. Mitochondrial labeling was found to be specific at any time point studied but showed no change over time. These ultrastructural data have been confirmed in vitro by the interaction of T3 with plasma membrane, nuclear membrane, nuclear matrix and mitochondria by real-time biospecific interaction analysis in a BIAcore system. These results demonstrate that T3 binds to hepatocytes before internalization, is transported both to mitochondria and to the nuclear envelope and translocated into the nuclear matrix.  相似文献   

15.
The interaction between ATP- and high K+-evoked increase in intracellular free calcium concentration ([Ca2+]i) was investigated to gain an insight into the mechanism of interaction of ATP with voltage-sensitive calcium channels. [Ca2+]i was measured in the neuronal model, neuroblastoma × glioma hybrid cells (NG 108–15), using the fluorescence indicator fura-2. In the presence of 1.8 mM extracellular Ca2+, ATP induced a rapid, concentration-dependent increase in [Ca2+]i. High K+ (50 mM) evoked a [Ca2+]i rise from 109 ± 11 nM to 387 ± 81 nM (n = 16). The application of either of these two [Ca2+]i-increase provoking agents in sequence with the other caused impairment of the latter effect. The mutual desensitization of the responses to ATP and high K+ strongly suggests that both agents rely at least in part on the same source of Ca2+ for elevation of [Ca2+]i in NG 108–15 cells.  相似文献   

16.
The collagen triple helix has a larger accessible surface area per molecular mass than globular proteins, and therefore potentially more water interaction sites. The effect of deuterium oxide on the stability of collagen model peptides and Type I collagen molecules was analyzed by circular dichroism and differential scanning calorimetry. The transition temperatures (Tm) of the protonated peptide (Pro‐Pro‐Gly)10 were 25.4 and 28.7°C in H2O and D2O, respectively. The increase of the Tm of (Pro‐Pro‐Gly)10 measured calorimetrically at 1.0°C min?1 in a low pH solution from the protonated to the deuterated solvent was 5.1°C. The increases of the Tm for (Gly‐Pro‐4(R)Hyp)9 and pepsin‐extracted Type I collagen were measured as 4.2 and 2.2°C, respectively. These results indicated that the increase in the Tm in the presence of D2O is comparable to that of globular proteins, and much less than reported previously for collagen model peptides [Gough and Bhatnagar, J Biomol Struct Dyn 1999, 17, 481–491]. These experimental results suggest that the interaction of water molecules with collagen is similar to the interaction of water with globular proteins, when the ratio of collagen to water is very small and collagen is monomerically dispersed in the solvent. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 93–101, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
The interaction with model membranes of a peptide, EqtII1–32, corresponding to the N‐terminal region of the pore‐forming toxin equinatoxin II (EqtII) has been studied using solid‐state NMR and molecular dynamics (MD) simulations. The distances between specifically labeled nuclei in [19F‐para]Phe16‐[1‐13C]Leu19 and [19F‐para]Phe16‐[15N]Leu23 analogs of EqtII1–32 measured by REDOR in lyophilized peptide were in agreement with published crystal and solution structures. However, in both DMPC and mixed DMPC:SM membrane environments, significant changes in the distances between the labeled amino acid pairs were observed, suggesting changes in helical content around the experimentally studied region, 16–23, in the presence of bilayers. 19F‐31P REDOR experiments indicated that the aromatic ring of Phe16 is in contact with lipid headgroups in both membrane environments. For the DMPC:SM mixed bilayers, a closer interaction between Phe16 side chains and lipid headgroups was observed, but an increase in distances was observed for both labeled amino acid pairs compared with those measured for EqtII1–32 in pure DMPC bilayers. The observed differences between DMPC and DMPC:SM bilayers may be due to the greater affinity of EqtII for the latter. MD simulations of EqtII1–32 in water, on a pure DMPC bilayer, and on a mixed DMPC:SM bilayer indicate significant peptide secondary structural differences in the different environments, with the DMPC‐bound peptide adopting helical formations at residues 16–24, whereas the DMPC:SM‐bound peptide exhibits a longer helical stretch, which may contribute to its enhanced activity against PC:SM compared with pure PC bilayers. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The mononuclear dipeptide‐based CuII complexes [CuII(trp‐phe)(phen)(H2O)] ⋅ ClO4 ( 1 ) and [CuII(trp‐phe)(bpy)(H2O)] ⋅ ClO4 ( 2 ) (trp‐phe=tryptophanphenylalanine, phen=1,10‐phenanthroline, bpy=2,2′‐bipyridine) were isolated, and their interaction with DNA was studied. They exhibit intercalative mode of interaction with DNA. The intercalative interaction was quantified by Stern Volmer quenching constant (Ksq=0.14 for 1 and 0.08 for 2 ). The CuII complexes convert supercoiled plasmid DNA into its nicked circular form hydrolytically at physiological conditions at a concentration as low as 5 μM (for 1 ) and 10 μM (for 2 ). The DNA hydrolysis rates at a complex concentration of 50 μM were determined as 1.74 h−1 (R=0.985) for 1 and 0.65 h−1 (R=0.965) for 2 . The rate enhancement in the range of 2.40–4.10×107‐fold compared to non‐catalyzed double‐stranded DNA is significant. This was attributed to the presence of a H2O molecule in the axial position of the Cu complexes.  相似文献   

19.
Abstract

Parameters of cooperative interactions of two or three oligodeoxyribonucleotides or their derivatives bound with the adjacent sites of the complementary template were measured using method of “complementary addressed modification titration” (CAMT). Complementary template (target) were modified with the reactive oligonucleotide derivatives (reagents) bearing covalently attached alkylating 4-[N-(2-chloroethyl)-N-methylaminojbenzylamino- group (C1RCH2NH)- at 5′-terminal phosphate. The targets had only one binding site for the reagent and either no (T10), or one (T'22 and T22) or two sites (T26) for the oligonucleotides (effectors) cooperatively bound with the adjacent sites on the template. Both unmodified oligonucleotides E1, E2 and their derivatives E1 phn, E2 phn bearing N- (2-hydroxyethyl)-phenazinium residues Phn- both at 5′- and 3′- ends covalently linked via ethylenediamine linker were used as effectors. Effectors E1 and E2 (E1 Phn and E2 Phn) bind, respectively, upstream or downstream from the reagent. Hexameric (X6) or octameric (X8 or X8m) reagents were used for the target modification. The reagent X8m formed one TT-mismatch with the target at the end opposite to location of the reactive moiety. The cooperativity parameter values characterizing the mutual interactions between the reagents X6, X8, X8m and effectors E1, E2, E1 phn, E2 Phn have been found as the ratio of the association constants of the reagents in the presence of effectors. The association constants were calculated from the dependencies of the target modification extent on initial concentrations of the reagents. The use of T26 existing both in linear and hairpin conformations permitted us to estimate additionally the role of indirect cooperativity originating from the induction of the target conformational change by the effectors. The following conclusions were done from the quantitative results. The efficiency of direct cooperativity is independent on the length of oligonucleotide for the same nature of the contact. The cooperativity parameter increases by factor about 3 in the presence of Phn-group covalently attached to oligonucleotides and located at the junctions. The presence of either alkylating group CIRCH2NH- or TT-mismatch at the junctions eliminates cooperative interaction between the bases. In the same time sufficiently effective cooperative interaction takes place in the case of simultaneous presence of both Phn- and either CIRCH2NH- group or TT-mismatch at the junction.  相似文献   

20.
We have isolated the MAP/tau proteins from twice-cycled chick brain microtubule preparations and demonstrated that they are responsible for the nitrocellulose DNA binding activity we and others have measured. Using the isolated MAP/tau proteins we then measured the apparent affinity constant Kapp for the homologous chick DNA interaction and found evidence for two equilibrium affinity classes-a Kapp = 6 × 107 M–1, responsible for the bulk of the DNA binding activity and a small (< 10%) higher affinity Kapp = 108 – 109 M–1, likely due to sequence specific binding protein species. Using the same chick brain MAP-tau protein, a heterologous interaction with D. melanogaster DNA, was found to possess just the lower affinity class-Kapp = 2 × 107 M–1. Under stringent binding conditions we carried out equilibrium nitrocellulose filter binding experiments in a ternary reaction mixture at constant MAP/tau protein and 35S radiolabelled chick DNA concentration using increasing and excess concentrations of competitor DNAs of different sources. The order of competitor strengths found was-chick DNA > mouse DNA > D. melanogaster = E. coli. DNA. These data and specifically the homologous DNA: protein case being the strongest competitor corroborate our previous studies using total microtubule protein and provide new evidence for a conserved interaction of a small DNA sequence class with MAP/tau protein species. Moreover, these data allow us to conclude that the conserved DNA sequence: MAP/tau protein interactions do not critically depend upon any energetic feature co-involving tubulin for their properties since tubulin is absent from these preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号