首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlled activation of hepatocyte aggregation is critical to three-dimensional (3D) multicellular morphogenesis during native regeneration of liver as well as tissue reconstruction therapies. In this work, we quantify the stimulatory effects of two model hepatotrophic activators, epidermal growth factor (EGF) and hepatocyte growth factor (HGF), on the aggregation kinetics and liver-specific function of hepatocytes cultured on organotypic substrates with differing mechanical resistivity. Substrate-specific morphogenesis of cultured hepatocytes is induced on a tissue basement membrane extract, Matrigel, formulated at two distinct levels of mechanical compliance (storage modulus G', at oscillatory shear rate 1 rad/s, was 34 Pa for basal Matrigel and 118 Pa for crosslinked Matrigel). Overall, we report that growth factor stimulation selectively promotes the kinetics of aggregation in the form of two-dimensional corded aggregates on basal Matrigel and three-dimensional spheroidal aggregates on crosslinked Matrigel. Our analysis also indicates that costimulation with EGF and HGF (20 ng/mL each) cooperatively maximizes the kinetics of aggregation in a substrate-specific manner. In addition, we show that the role of growth factor stimulation on hepatocyte function is sensitively governed by the mechanical compliance of the substrate. In particular, on matrices with high compliance, costimulatory aggregation is shown to elicit a marked increase in albumin secretion rate, whereas on matrices with low compliance aggregation results in effective functional repression to basal, unstimulated levels. Thus, our studies highlight a novel interplay of physicochemical parameters of the culture microenvironment, leading to selective enhancement or repression of differentiated functions of hepatocytes, in concert with the activation of cellular morphogenesis.  相似文献   

2.
The receptor protein tyrosine kinase Met and its ligand, hepatocyte growth factor, regulate cellular morphology, intercellular adhesion, and interactions among junctional proteins in numerous cell types. However, they have not been extensively studied in the central nervous system. We report that Met is clustered at excitatory synapses and that treatment of neurons with hepatocyte growth factor can enhance expression and clustering of synaptic proteins. We demonstrate that Met is present in clusters that strongly colocalize with the NR2B subunit of the N-methyl-D-aspartate receptor, PSD-95, and synapsin at excitatory synapses on hippocampal neurons in vitro. We also show that Met is clustered at the postsynaptic density of excitatory synapses in the CA1 region of the hippocampus with the use of immuno-electron microscopy. Hepatocyte growth factor also forms clusters that partially colocalize with PSD-95. Treatment of cultured neurons with exogenous hepatocyte growth factor increased expression of the NR2B subunit of the N-methyl-D-aspartate receptor, calcium/calmodulin-dependent protein kinase II, and the GluR1 subunit of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor. The size and number of clusters of these proteins were also increased at sites along dendrites in response to hepatocyte growth factor. These results suggest a novel role for Met and hepatocyte growth factor in regulating synapses.  相似文献   

3.
4.
5.
Microenvironmental factors affect different aspects of tumor cell biology, including cell survival, invasion, and metastasis. Here, we report that hepatocyte growth factor and hypoxia may contribute to breast carcinoma cell invasiveness by inducing the chemokine receptor CXCR4. Hepatocyte growth factor enhanced CXCR4 mRNA and protein expression exclusively in MCF-7 (low invasive) carcinoma cells, while in response to hypoxia, CXCR4 induction was observed in both MCF-7 and MDA-MB 231 (highly invasive) carcinoma cells. The receptor induction had a functional role in cancer cells, as demonstrated by the fact that hepatocyte growth factor pretreatment promoted MCF-7 cell migration toward the CXCR4-specific ligand CXCL12. Extracellular signal-regulated protein kinase 1/2 (ERK1/2) and phosphoinositide-3-kinase (PI3K) transduction pathways seemed to be differently implicated in the early induction of CXCR4 by hepatocyte growth factor or hypoxia in the two breast carcinoma cells examined.  相似文献   

6.
The role of E-cadherin in the spheroid formation of hepatocytes adhered on the poly(N-p-vinylbenzyl-D-lactonamide) (PVLA) as a model ligand for asialoglycoprotein receptors (ASGP-R) of hepatocytes was studied. Expression of E-cadherin was increased in round hepatocytes adhered on a high-coating density of PVLA (100 μg/ml), and also in flat ones adhered on a low-coating density of PVLA (1 μg/ml) in the presence of epidermal growth factor (EGF). Hepatocyte spheroids formed on the high-coating density of PVLA in the presence of EGF after 48 h were inhibited by an anti-E-cadherin monoclonal antibody (ECCD-1). From immunofluorescence and confocal laser microscopy, E-cadherin was localized in the intercellular boundaries and concentrated at the inside surface of aggregated cells. As a result, E-cadherin could play an important role in hepatocyte assembly.  相似文献   

7.
《The Journal of cell biology》1996,135(6):1633-1642
Integrins mediate cell adhesion, migration, and a variety of signal transduction events. These integrin actions can overlap or even synergize with those of growth factors. We examined for mechanisms of collaboration or synergy between integrins and growth factors involving MAP kinases, which regulate many cellular functions. In cooperation with integrins, the growth factors EGF, PDGF-BB, and basic FGF each produced a marked, transient activation of the ERK (extracellular signal-regulated kinase) class of MAP kinase, but only if the integrins were both aggregated and occupied by ligand. Transmembrane accumulation of total tyrosine-phosphorylated proteins, as well as nonsynergistic MAP kinase activation, could be induced by simple integrin aggregation, whereas enhanced transient accumulation of the EGF-receptor substrate eps8 required integrin aggregation and occupancy, as well as EGF treatment. Each type of growth factor receptor was itself induced to aggregate transiently by integrin ligand-coated beads in a process requiring both aggregation and occupancy of integrin receptors, but not the presence of growth factor ligand. Synergism was also observed between integrins and growth factors for triggering tyrosine phosphorylation of EGF, PDGF, and FGF receptors. This collaborative response also required both integrin aggregation and occupancy. These studies identify mechanisms in the signal transduction response to integrins and growth factors that require various combinations of integrin aggregation and ligands for integrin or growth factor receptors, providing opportunities for collaboration between these major regulatory systems.  相似文献   

8.
The proto-oncogene c-MET encodes the tyrosine kinase receptor for hepatocyte growth factor (HGF), a pleiotropic cytokine controlling growth, survival, motility, invasive migration, and differentiation of epithelial cells. Like several other epithelial neoplasms, thyroid carcinomas have been found to overexpress c-MET at both the mRNA and protein level. The biological relevance of Met overexpression to thyroid carcinoma natural history, however, remains to be elucidated. Therefore, we analyzed Met expression and response to HGF in two cell lines established from human thyroid carcinomas. In both lines we observed that the overexpressed and constitutively tyrosine phosphorylated HGF receptor maintained biochemical responsiveness to the ligand. Both cell lines were also found to respond to HGF by consistently increasing their motility and invading in vitro reconstituted basal membranes. Conversely, no effect of HGF could be observed in proliferation and survival assays. These data show that overexpression of Met specifically confers to transformed thyroid cells a motile-invasive phenotype that is dependent on exogenous HGF stimulation. J. Cell. Physiol. 180:365–371, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

9.
10.
Optimization of cell culture media based on statistical experimental design methodology is a widely used approach for improving cultivation conditions. We applied this methodology to refine the composition of an established culture medium for growth of a human hepatoma cell line, C3A. A selection of growth factors and nutrient supplements were systematically screened according to standard design of experiments (DoE) procedures. The results of the screening indicated that the medium additives hepatocyte growth factor, oncostatin M, and fibroblast growth factor 4 significantly influenced the metabolic activities of the C3A cell line. Surface response methodology revealed that the optimum levels for these factors were 30 ng/ml for hepatocyte growth factor and 35 ng/ml for oncostatin M. Additional experiments on primary human hepatocyte cultures showed high variance in metabolic activities between cells from different individuals, making determination of optimal levels of factors more difficult. Still, it was possible to conclude that hepatocyte growth factor, epidermal growth factor, and oncostatin M had decisive effects on the metabolic functions of primary human hepatocytes.  相似文献   

11.
Lin N  Lin J  Bo L  Weidong P  Chen S  Xu R 《Cell proliferation》2010,43(5):427-434
Objectives: Alginate scaffolds are the most frequently investigated biomaterials in tissue engineering. Tissue engineering techniques that generate liver tissue have become important for treatment of a number of liver diseases and recent studies indicate that bone marrow‐derived stem cells (BMSCs) can differentiate into hepatocyte‐like cells. The goal of the study described here, was to examine in vitro hepatic differentiation potential of BMSCs cultured in an alginate scaffold. Materials and methods: To investigate the potential of BMSCs to differentiate into hepatocyte‐like cells, we cultured BMSCs in alginate scaffolds in the presence of specific growth factors including hepatocyte growth factor, epidermal growth factor and fibroblast growth factor‐4. Results: We can demonstrate that alginate scaffolds are compatible for growth of BMSCs and when cultured in alginate scaffolds for several days they display several liver‐specific markers and functions. Specifically, they expressed genes encoding alpha‐foetoprotein, albumin (ALB), connexin 32 and CYP7A1. In addition, these BMSCs produced both ALB and urea, expressed cytokeratin‐18 (CK‐18) and were capable of glycogen storage. Percentage of CK‐18 positive cells, a marker of hepatocytes, was 56.7%. Conclusions: Our three‐dimensional alginate scaffolds were highly biocompatible with BMSCs. Furthermore, culturing induced their differentiation into hepatocyte‐like cells. Therefore, BMSCs cultured in alginate scaffolds may be applicable for hepatic tissue engineering.  相似文献   

12.
13.
Summary Heparin-binding fibroblast growth factors (HBGF) have been implicated in the regeneration of both parenchymal and nonparenchymal cells of the liver. The response to and phenotype of hepatocyte receptors for HBGF-1 (acidic fibroblast growth factor) and HBGF-2 (basic fibroblast growth factor) were compared to keratinocytes, fibroblasts, and endothelial cells. HBGF-1 stimulated DNA synthesis in hepatocytes, keratinocytes, fibroblasts, and endothelial cells whereas activity of HBGF-2 was limited to fibroblasts and endothelial cells. HBGF-2 antagonized the mitogenic activity of HBGF-1 for hepatocytes and keratinocytes. Hepatocytes and keratinocytes exhibited both high- and low-affinity, nonmatrix receptor sites for HBGF-1, but only low-affinity sites for HBGF-2. The mesenchymal cells displayed only high-affinity sites for both HBGF-1 and HBGF-2. Northern blot and immunochemical analysis revealed that the expression of HBGF receptor genesbek andflg are partitioned between normal hepatocytes and nonparenchymal cells, respectively. Expression of epithelial cell-specific, mesenchymal cell-derived HBGF-7 (keratinocyte growth factor) mRNA in regenerating liver tissue was undetectable relative to HBGF-1. The results support a multifunctional role of HBGF-1 acting through different receptor phenotypes in hepatocyte and nonparenchymal cells during liver regeneration.  相似文献   

14.
In previous research, we discovered that turkey deferent duct epithelial cells express a serine protease. Our experimental objective was to identify the gene that encodes this protein. A lambda phage cDNA library from duct cell mRNA was constructed. The library was screened using monoclonal antibodies previously produced against the turkey deferent-duct serine protease. Phage containing the protease cDNA was excised and re-circularized into plasmids. E. coli were transformed with plasmids containing protease cDNA, which was then isolated for sequencing. NCBI searches within the GenBank™ database returned 63.5 and 61.7% identity with murine and human hepatocyte growth-factor activator (HGFA) precursor, respectively. The turkey protease cDNA was then cloned into the pQE-32 expression vector and transformed into M15 cells for HIS-tagged expression of the recombinant protein, which was then purified using nickel-chelated Sepharose spin columns. Afterwards, Western blot analysis of the purified recombinant turkey protein revealed recognition by a monoclonal antibody specific to the proteolytic subunit of the turkey deferent duct protease. Therefore, these findings indicate that the recombinant HGFA precursor isolated from the deferent duct is the turkey seminal plasma protease that is secreted from the deferent duct. HGFA, a member of the Kringle-serine proteinase superfamily, can initiate diverse mitogenic, morphogenic and motogenic effects through its substrate hepatocyte growth factor. Although the presence of hepatocyte growth factor and its c-MET receptor have been reported in male mammalian reproductive tracts, our novel findings on the secretion of HGFA precursor from turkeys may help to elucidate the regulation of activated hepatocyte growth factor.  相似文献   

15.
Tumor necrosis factor (TNF) has multiple biological effects such as participating in inflammation, apoptosis, and cell proliferation, but the mechanisms of its effects on epithelial cell proliferation have not been examined in detail. At the early stages of liver regeneration, TNF functions as a priming agent for hepatocyte replication and increases the sensitivity of hepatocytes to growth factors such as transforming growth factor alpha (TGFalpha); however, the mechanisms by which TNF interacts with growth factors and enhances hepatocyte replication are not known. Using the AML-12 hepatocyte cell line, we show that TNF stimulates proliferation of these cells through transactivation of the epidermal growth factor receptor (EGFR). The transactivation mechanism involves the release of TGFalpha into the medium through activation of the metalloproteinase TNFalpha-converting enzyme (also known as ADAM 17). Binding of the ligand to EGFR initiates a mitogenic cascade through extracellular signal-regulated kinases 1 and 2 and the partial involvement of protein kinase B. TNF-induced release of TGFalpha and activation of EGFR signaling were inhibited by TNFalpha protease inhibitor-1, an agent that interferes with TNFalpha-converting enzyme activity. We suggest that TNF-induced transactivation of EGFR may provide an early signal for the entry of hepatocytes into the cell cycle and may integrate proliferative and survival pathways at the start of liver regeneration.  相似文献   

16.
The Listeria monocytogenes surface protein InlB binds to the extracellular domain of the human receptor tyrosine kinase Met, the product of the c-met proto-oncogene. InlB binding activates the Met receptor, leading to uptake of Listeria into normally nonphagocytic host cells. The N-terminal half of InlB (InlB321) is sufficient for Met binding and activation. The complex between this Met-binding domain of InlB and various constructs of the Met ectodomain was characterized by size exclusion chromatography and dynamic light scattering, and structural models were built using small-angle X-ray scattering and small-angle neutron scattering. Although most receptor tyrosine kinase ligands induce receptor dimerization, InlB321 consistently binds the Met ectodomain with a 1:1 stoichiometry. A construct comprising the Sema and PSI domains of Met, although sufficient to bind the physiological Met ligand hepatocyte growth factor/scatter factor, does not form a complex with InlB321 in solution, highlighting the importance of Met Ig domains for InlB binding. Small-angle X-ray scattering and small-angle neutron scattering measurements of ligand and receptor, both free and in complex, reveal an elongated shape for the receptor. The four Ig domains form a bent, rather than a fully extended, conformation, and InlB321 binds to Sema and the first Ig domain of Met, in agreement with the recent crystal structure of a smaller Met fragment in complex with InlB321. These results call into question whether receptor dimerization is the basic underlying event in InlB321-mediated Met activation and demonstrate differences in the mechanisms by which the physiological ligand hepatocyte growth factor/scatter factor and InlB321 bind and activate the Met receptor.  相似文献   

17.
Summary Novel Madin Darby Canine Kidney cell clones were isolated. These cell clones exhibit differential responsiveness to inducers of tubule or cyst formation in collagen gel culture: hepatocyte growth factor or inducers of intracellular cAMP formation, respectively. In gel culture, clone OR93.22.D6 forms cysts and responds with morphological transformation to both hepatocyte growth factor and prostaglandin E1, and is most typical of a previously described cell type except for its higher transepithelial electrical resistance. OR55.25.II20 forms tubules in culture, is unresponsive to hepatocyte growth factor, and forms prostaglandin-induced spherical cysts. OR55.28.V2 forms dense cell spheres under control conditions, is induced to form tubules by hepatocyte growth factor, and is unresponsive to prostaglandin. OR55.29 forms only cysts, and is the only clone to form domes in monolayer culture. Tubule formation induced by hepatocyte growth factor, in all clones except OR55.25.II20, is blocked by a neutralizing antibody. In defined medium, without hepatocyte growth factor or prostaglandin, OR55.25.II20 forms spontaneous tubules. This finding indicates that a tubulogenic serum factor is not responsible for the observed phenotype. Increasing prostaglandin concentrations lead to inhibition of tubule formation and increased cyst formation. This observation suggests that induction of intracellular cAMP formation negatively regulates tubule formation in these cells, and implies that cystogenesis may represent a “default pathway” for impaired tubulogenesis. These observations demonstrate that some facets of renal tubulogenesis may be independent of hepatocyte growth factor, and that care must be exercised when comparing biological studies utilizing different clones.  相似文献   

18.
We report the cloning of full-length cDNAs for a plasminogen-related growth factor, hepatocyte growth factor/scatter factor (HGF/SF), its tyrosine kinase receptor, c-met, and a close member of the same family, hepatocyte growth factor-like/macrophage stimulating protein (HGFI/MSP), from the chick. We have used these cDNAs to provide the first report of the expression of this family of growth factors and the c-met receptor at early stages of vertebrate development. RNAase protection and wholemount in situ hyb ridization were used on chick embryos between formation of the primitive streak and early organogenesis. We find patterns of expression for HGF/SF and its receptor c-met consistent with their known roles in ep ithelial-mesenchymal transformation and angiogenesis. In addition, these genes and HGFI/MSP are expressed in discrete locations within developing somites, suggesting a role in paraxial mesodermal development. Very strong and early expression of HGF/SF in the elevating limb buds suggests its involvement in limb outgrowth. HGFI/MSP is expressed in the notochord and then in the prospective floor plate region and could play a role in development of the neural tube. Interestingly, c-met is often more closely as sociated with HGFI/MSP than with its known ligand, HGF/SF, raising the possibility that c-met expression may be induced by HGFI/MSP. © 1995 Wiley-Liss, Inc.  相似文献   

19.
The receptor tyrosine kinase Met plays a pivotal role in vertebrate development and tissue regeneration, its deregulation contributes to cancer. Met is also targeted during the infection by the facultative intracellular bacterium Listeria monocytogenes. The mechanistic basis for Met activation by its natural ligand hepatocyte growth factor/scatter factor (HGF/SF) is only beginning to be understood at a structural level. Crystal structures of Met in complex with L. monocytogenes InlB suggest that Met dimerization by this bacterial invasion protein is mediated by a dimer contact of the ligand. Here, I review the structural basis of Met activation by InlB and highlight parallels and differences to the physiological Met ligand HGF/SF and its splice variant NK1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号