首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Chromosome 3 specific NotI microarrays containing 180 NotI linking clones associated with 188 genes were hybridized to NotI representation probes prepared using matched tumor/normal samples from major epithelial cancers: breast (47 pairs), lung (40 pairs) cervical (43 pairs), kidney (34 pairs of clear cell renal cell carcinoma), colon (24 pairs), ovarian (25 pairs) and prostate (18 pairs). In all tested primary tumors (compared to normal controls) methylation and/or deletions was found. For the first time we showed that the gene LRRC3B was frequently methylated and/or deleted in breast carcinoma - 32% of samples, cervical - 35%, lung - 40%, renal - 35%, ovarian - 28%, colon - 33% and prostate cancer - 44%. To check these results bisulfite sequencing using cloned PCR products with representative two breast, one cervical, two renal, two ovarian and two colon cancer samples was performed. In all cases methylation was confirmed. Expression analysis using RT-qPCR showed that LRRC3B is strongly down-regulated at the latest stages of RCC and ovarian cancers. In addition we showed that LRRC3B exhibit strong cell growth inhibiting activity (more than 95%) in colony formation experiments in vitro in KRC/Y renal cell carcinoma line. All these data suggest that LRRC3B gene could be involved in the process of carcinogenesis as a tumor suppressor gene.  相似文献   

10.
11.
Growing evidence has shown that Transmembrane Serine Protease 2 (TMPRSS2) not only contributes to the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection, but is also closely associated with the incidence and progression of tumours. However, the correlation of coronavirus disease (COVID‐19) and cancers, and the prognostic value and molecular function of TMPRSS2 in various cancers have not been fully understood. In this study, the expression, genetic variations, correlated genes, immune infiltration and prognostic value of TMPRSS2 were analysed in many cancers using different bioinformatics platforms. The observed findings revealed that the expression of TMPRSS2 was considerably decreased in many tumour tissues. In the prognostic analysis, the expression of TMPRSS2 was considerably linked with the clinical consequences of the brain, blood, colorectal, breast, ovarian, lung and soft tissue cancer. In protein network analysis, we determined 27 proteins as protein partners of TMPRSS2, which can regulate the progression and prognosis of cancer mediated by TMPRSS2. Besides, a high level of TMPRSS2 was linked with immune cell infiltration in various cancers. Furthermore, according to the pathway analysis of differently expressed genes (DEGs) with TMPRSS2 in lung, breast, ovarian and colorectal cancer, 160 DEGs genes were found and were significantly enriched in respiratory system infection and tumour progression pathways. In conclusion, the findings of this study demonstrate that TMPRSS2 may be an effective biomarker and therapeutic target in various cancers in humans, and may also provide new directions for specific tumour patients to prevent SARS‐CoV‐2 infection during the COVID‐19 outbreak.  相似文献   

12.
CTSL is expressed by cancerous tissues and encodes a lysosomal cysteine proteinase that regulates cancer progression and SARS-CoV-2 entry. Therefore, it is critical to predict the susceptibility of cancer patients for SARS-CoV-2 and evaluate the correlation between disease outcomes and the expression of CTSL in malignant cancer tissues. In the current study, we analyzed CTSL expression, mutation rate, survival and COVID-19 disease outcomes in cancer and normal tissues, using online databases. We also performed immunohistochemistry (IHC) to test CTSL expression and western blot to monitor its regulation by cordycepin (CD), and N6, N6-dimethyladenosine (m62A), respectively. We found that CTSL is conserved across different species, and highly expressed in both normal and cancer tissues from human, as compared to ACE2 or other proteinases/proteases. Additionally, the expression of CTSL protein was the highest in the lung tissue. We show that the mRNA expression of CTSL is 66.4-fold higher in normal lungs and 54.8-fold higher in cancer tissues, as compared to ACE2 mRNA expression in the respective tissues. Compared to other proteases/proteinases/convertases such as TMPRSS2 and FURIN, the expression of CTSL was higher in both normal lungs and lung cancer samples. All these data indicate that CTSL might play an important role in COVID-19 pathogenesis in normal and cancer tissues of the lungs. Additionally, the CTSL-002 isoform containing both the inhibitor_I29 and Peptidase_C1 domains was highly prevalent in all cancers, suggesting its potential role in tumor progression and SARS-CoV-2 entry in multiple types of cancers. Further analysis of the expression of CTSL mutant showed a correlation with FURIN and TMPRSS2, suggesting a potential role of CTSL mutations in modulating SARS-CoV-2 entry in cancers. Moreover, high expression of CTSL significantly correlated with a short overall survival (OS) in lung cancer and glioma. Thus, CTSL might play a major role in the susceptibility of lung cancer and glioma patients to SARS-CoV-2 uptake and COVID-19 severity. Furthermore, CD or m62A inhibited CTSL expression in the cancer cell lines A549, MDA-MB-231, and/or PC3 in a dose dependent manner. In conclusion, we show that CTSL is highly expressed in normal tissues and increased in most cancers, and CD or m62A could inhibit its expression, suggesting the therapeutic potential of targeting CTSL for cancer and COVID-19 treatment.  相似文献   

13.
Lung cancer is highly heterogenous and is composed of various subtypes that are in diverse differential stages. The newly identified integrin-interacting proteins Kindlin-1 and Kindlin-2 are the activators of transmembrane receptor integrins that play important roles in cancer progression. In this report we present the expression profiles of Kindlin-1 and Kindlin-2 in lung cancers using patient specimens and established their correlation with lung cancer progression. We found that Kindlin-1 was expressed in epithelia-derived non-small-cell lung cancer, especially in squamous cell lung cancer but expressed at low levels in poorly differentiated large cell lung cancer. However, Kindlin-2 was highly expressed in large cell lung cancer. Both Kindlin-1 and Kindlin-2 were found not expressed or expressed at very low levels in neuroendocrine-derived small cell lung cancer. Importantly, the Kindlin-1 expression level was positively correlated with the differentiation of squamous cell lung cancer. Surprisingly, we found that the very homologous Kindlin family proteins, Kindlin-1 and Kindlin-2, displayed counteracting functional roles in lung cancer cells. Ectopic expression of Kindlin-1 in non-small-cell lung cancer cells inhibited in vitro cell migration and in vivo tumor growth, while Kindlin-2 promoted these functions. Mechanistically, Kindlin-1 prohibited epithelail to mesenchymal transition in non-small-cell lung cancer cells, while Kindlin-2 enhanced epithelail to mesenchymal transition in these cells. Taken together, we demonstrated that Kindlin-1 and Kindlin-2 differentially regulate lung cancer cell progression. Further, the expression levels of Kindlin-1 might be potentially used as a marker for lung cancer differentiation and targeting Kindlin-2 might block the invasive growth of large cell lung cancer.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT). The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33) and showed that TWIST1 expression was linked to EGFR mutations (P<0.001), to low CDH1 expression (P<0.05) and low disease free survival (P = 0.044). To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号