首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation.  相似文献   

2.
3.
Aberrant DNA methylation often occurs in colorectal cancer (CRC). In our study we applied a genome-wide DNA methylation analysis approach, MethylCap-seq, to map the differentially methylated regions (DMRs) in 24 tumors and matched normal colon samples. In total, 2687 frequently hypermethylated and 468 frequently hypomethylated regions were identified, which include potential biomarkers for CRC diagnosis. Hypermethylation in the tumor samples was enriched at CpG islands and gene promoters, while hypomethylation was distributed throughout the genome. Using epigenetic data from human embryonic stem cells, we show that frequently hypermethylated regions coincide with bivalent loci in human embryonic stem cells. DNA methylation is commonly thought to lead to gene silencing; however, integration of publically available gene expression data indicates that 75% of the frequently hypermethylated genes were most likely already lowly or not expressed in normal tissue. Collectively, our study provides genome-wide DNA methylation maps of CRC, comprehensive lists of DMRs, and gives insights into the role of aberrant DNA methylation in CRC formation.  相似文献   

4.
Chronic exposure to glucocorticoids (GCs) can lead to psychiatric complications through epigenetic mechanisms such as DNA methylation (DNAm). We sought to determine whether epigenetic changes in a peripheral tissue can serve as a surrogate for those in a relatively inaccessible tissue such as the brain. DNA extracted from the hippocampus and blood of mice treated with GCs or vehicle solution was assayed using a genome-wide DNAm platform (Methyl-Seq) to identify differentially methylated regions (DMRs) induced by GC treatment. We observed that ~70% of the DMRs in both tissues lost methylation following GC treatment. Of the 3,095 DMRs that mapped to the same genes in both tissues, 1,853 DMRs underwent DNAm changes in the same direction. Interestingly, only 209 DMRs (<7%) overlapped in genomic coordinates between the 2 tissues, suggesting tissue-specific differences in GC-targeted loci. Pathway analysis showed that the DMR-associated genes were members of pathways involved in metabolism, immune function, and neurodevelopment. Also, changes in cell type composition of blood and brain were examined by fluorescence-activated cell sorting. Separation of the cortex into neuronal and non-neuronal fractions and the leukocytes into T-cells, B-cells, and neutrophils showed that GC-induced methylation changes primarily occurred in neurons and T-cells, with the blood tissue also undergoing a shift in the proportion of constituent cell types while the proportion of neurons and glia in the brain remained stable. From the current pilot study, we found that despite tissue-specific epigenetic changes and cellular heterogeneity, blood can serve as a surrogate for GC-induced changes in the brain.  相似文献   

5.
Aberrant DNA methylation often occurs in colorectal cancer (CRC). In our study we applied a genome-wide DNA methylation analysis approach, MethylCap-seq, to map the differentially methylated regions (DMRs) in 24 tumors and matched normal colon samples. In total, 2687 frequently hypermethylated and 468 frequently hypomethylated regions were identified, which include potential biomarkers for CRC diagnosis. Hypermethylation in the tumor samples was enriched at CpG islands and gene promoters, while hypomethylation was distributed throughout the genome. Using epigenetic data from human embryonic stem cells, we show that frequently hypermethylated regions coincide with bivalent loci in human embryonic stem cells. DNA methylation is commonly thought to lead to gene silencing; however, integration of publically available gene expression data indicates that 75% of the frequently hypermethylated genes were most likely already lowly or not expressed in normal tissue. Collectively, our study provides genome-wide DNA methylation maps of CRC, comprehensive lists of DMRs, and gives insights into the role of aberrant DNA methylation in CRC formation.  相似文献   

6.
DNA methylation is a chromatin modification that contributes to epigenetic regulation of gene expression. The inheritance patterns and trans-generational stability of 962 differentially methylated regions (DMRs) were assessed in a panel of 71 near-isogenic lines (NILs) derived from maize (Zea mays) inbred lines B73 and Mo17. The majority of DMRs exhibit inheritance patterns that would be expected for local (cis) inheritance of DNA methylation variation such that DNA methylation level was coupled to local genotype. There are few examples of DNA methylation that exhibit trans-acting control or paramutation-like patterns. The cis-inherited DMRs provide an opportunity to study the stability of inheritance for DNA methylation variation. There was very little evidence for alterations of DNA methylation levels at these DMRs during the generations of the NIL population development. DNA methylation level was associated with local genotypes in nearly all of the >30,000 potential cases of inheritance. The majority of the DMRs were not associated with small RNAs. Together, our results suggest that a significant portion of DNA methylation variation in maize exhibits locally (cis) inherited patterns, is highly stable, and does not require active programming by small RNAs for maintenance.DNA methylation may contribute to heritable epigenetic information in many eukaryotic genomes. In this study, we have documented the inheritance patterns and trans-generational stability for nearly 1000 DNA methylation variants in a segregating maize population. At most loci studied, the DNA methylation differences are locally inherited and are not influenced by the other allele or other genomic regions. The inheritance of DNA methylation levels across generations is quite robust with almost no examples of unstable inheritance, suggesting that DNA methylation differences can be quite stably inherited, even in segregating populations.  相似文献   

7.
8.
DNA methylation is an essential epigenetic mechanism involved in many essential cellular processes. During development epigenetic reprograming takes place during gametogenesis and then again in the pre-implantation embryo. These two reprograming windows ensure genome-wide removal of methylation in the primordial germ cells so that sex-specific signatures can be acquired in the sperm and oocyte. Following fertilization the majority of this epigenetic information is erased to give the developing embryo an epigenetic profile coherent with pluripotency. It is estimated that ∼65% of the genome is differentially methylated between the gametes, however following embryonic reprogramming only parent-of-origin methylation at known imprinted loci remains. This suggests that trans-acting factors such as Zfp57 can discriminate imprinted differentially methylated regions (DMRs) from the thousands of CpG rich regions that are differentially marked in the gametes. Recently transient imprinted DMRs have been identified suggesting that these loci are also protected from pre-implantation reprograming but succumb to de novo remethylation at the implantation stage. This highlights that “ubiquitous” imprinted loci are also resilient to gaining methylation by protecting their unmethylated alleles. In this review I examine the processes involved in epigenetic reprograming and the mechanisms that ensure allelic methylation at imprinted loci is retained throughout the life of the organism, discussing the critical differences between mouse and humans.This article is part of a Directed Issue entitled: Epigenetics Dynamics in development and disease.  相似文献   

9.
Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.  相似文献   

10.
In different mammalian species, in vitro culture and manipulation can lead to aberrant fetal and peri-natal development. It has been postulated that these diverse abnormalities are caused by epigenetic alterations and that these could affect genes that are regulated by genomic imprinting. To explore this hypothesis relative to somatic cell nuclear transfer in sheep, we investigated whether the ovine H19-IGF2 and IGF2R loci are imprinted and analysed their DNA methylation status in cloned lambs. A comparison between parthenogenetic and control concepti established that imprinting at these two growth-related loci is evolutionarily conserved in sheep. As in humans and mice, IGF2R and H19 comprise differentially methylated regions (DMRs) that are methylated on one of the two parental alleles predominantly. In tongue tissue from 12 out of 13 cloned lambs analysed, the DMR in the second intron of IGF2R had strongly reduced levels of DNA methylation. The DMR located upstream of the ovine H19 gene was found to be similarly organised as in humans and mice, with multiple CTCF binding sites. At this DMR, however, aberrant methylation was observed in only one of the cloned lambs. Although the underlying mechanisms remain to be determined, our data indicate that somatic cell nuclear transfer procedures can lead to epigenetic deregulation at imprinted loci.  相似文献   

11.
A PCR-based genomic scan has been undertaken to estimate the extent and ratio of maternally versus paternally methylated DNA regions in endosperm, embryo, and leaf of Zea mays (maize). Analysis of several inbred lines and their reciprocal crosses identified a large number of conserved, differentially methylated DNA regions (DMRs) that were specific to the endosperm. DMRs were hypomethylated at specific methylation-sensitive restriction sites upon maternal transmission, whereas upon paternal transmission, the methylation levels were similar to those observed in embryo and leaf. Maternal hypomethylation was extensive and offers a likely explanation for the 13% reduction in methyl-cytosine content of the endosperm compared with leaf tissue. DMRs showed identity to expressed genic regions, were observed early after fertilization, and maintained at a later stage of endosperm development. The implications of extensive maternal hypomethylation with respect to endosperm development and epigenetic reprogramming will be discussed.  相似文献   

12.
Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution.  相似文献   

13.

Background

Hepatocellular carcinoma (HCC) is one of the most common cancers and frequently presents with an advanced disease at diagnosis. There is only limited knowledge of genome-scale methylation changes in HCC.

Methods and Findings

We performed genome-wide methylation profiling in a total of 47 samples including 27 HCC and 20 adjacent normal liver tissues using the Illumina HumanMethylation450 BeadChip. We focused on differential methylation patterns in the promoter CpG islands as well as in various less studied genomic regions such as those surrounding the CpG islands, i.e. shores and shelves. Of the 485,577 loci studied, significant differential methylation (DM) was observed between HCC and adjacent normal tissues at 62,692 loci or 13% (p<1.03e-07). Of them, 61,058 loci (97%) were hypomethylated and most of these loci were located in the intergenic regions (43%) or gene bodies (33%). Our analysis also identified 10,775 differentially methylated (DM) loci (17% out of 62,692 loci) located in or surrounding the gene promoters, 4% of which reside in known Differentially Methylated Regions (DMRs) including reprogramming specific DMRs and cancer specific DMRs, while the rest (10,315) involving 4,106 genes could be potential new HCC DMR loci. Interestingly, the promoter-related DM loci occurred twice as frequently in the shores than in the actual CpG islands. We further characterized 982 DM loci in the promoter CpG islands to evaluate their potential biological function and found that the methylation changes could have effect on the signaling networks of Cellular development, Gene expression and Cell death (p = 1.0e-38), with BMP4, CDKN2A, GSTP1, and NFATC1 on the top of the gene list.

Conclusion

Substantial changes of DNA methylation at a genome-wide level were observed in HCC. Understanding epigenetic changes in HCC will help to elucidate the pathogenesis and may eventually lead to identification of molecular markers for liver cancer diagnosis, treatment and prognosis.  相似文献   

14.
Kou  Shuyan  Gu  Qiongyao  Duan  Liu  Liu  Gaojing  Yuan  Pingrong  Li  Huahui  Wu  Zhigang  Liu  Weihua  Huang  Ping  Liu  Li 《Journal of Plant Growth Regulation》2022,41(7):2903-2917

Rice is the important crop for more than half of the world population. However, drought can have a devastating impact on rice growth and reduce yield drastically. Understanding the response of rice to drought stress is especially important for crop breeding. Previously we found that rice enhanced its tolerance to drought stresses via stress memory mechanisms. Numerous memory genes were identified to play important roles in the process. DNA methylation was reported to mediate tolerance via regulating gene expression and enhances the survival rate of rice encountering drought stress. However, how DNA methylation involved in stress memory is still not clear. In this study, genome-wide bisulphite sequencing at a single base resolution methylome profiling level was performed and analyzed in rice cultivar under recurrent drought stresses and recovery treatments. We found that rice drought stress memory-related differentially methylated regions (DMRs) showed dynamic and distinct patterns. The drought-memory DMRs may regulate Transposable elements and gene expression to cope with short-term repeated drought stresses. Our findings of drought-memory DMRs can explain mechanisms of rice drought stress memory in a new perspective on global methylome details. Using epigenetic markers to breed drought-resistant rice would become a feasible way in the future research.

  相似文献   

15.
16.
Human embryonic stem (hES) cells and fetal mesenchymal stem cells (fMSC) offer great potential for regenerative therapy strategies. It is therefore important to characterize the properties of these cells in vitro. One major way the environment impacts on cellular physiology is through changes to epigenetic mechanisms. Genes subject to epigenetic regulation via genomic imprinting have been characterized extensively. The integrity of imprinted gene expression therefore provides a measurable index for epigenetic stability. Allelic expression of 26 imprinted genes and DNA methylation at associated differentially methylated regions (DMRs) was measured in fMSC and hES cell lines. Both cell types exhibited monoallelic expression of 13 imprinted genes, biallelic expression of six imprinted genes, and there were seven genes that differed in allelic expression between cell lines. fMSC s exhibited the differential DNA methylation patterns associated with imprinted expression. This was unexpected given that gene expression of several imprinted genes was biallelic. However, in hES cells, differential methylation was perturbed. These atypical methylation patterns did not correlate with allelic expression. Our results suggest that regardless of stem cell origin, in vitro culture affects the integrity of imprinted gene expression in human cells. We identify biallelic and variably expressed genes that may inform on overall epigenetic stability. As differential methylation did not correlate with imprinted expression changes we propose that other epigenetic effectors are adversely influenced by the in vitro environment. Since DMR integrity was maintained in fMSC but not hES cells, we postulate that specific hES cell derivation and culturing practices result in changes in methylation at DMRs.Key words: genomic imprinting, embryonic stem cells, mesenchymal stem cells, differentiation, methylation, epigenetic stability  相似文献   

17.
Nagase H  Ghosh S 《The FEBS journal》2008,275(8):1617-1623
Epigenetics refers to heritable phenotypic alterations in the absence of DNA sequence changes, and DNA methylation is one of the extensively studied epigenetic alterations. DNA methylation is an evolutionally conserved mechanism to regulate gene expression in mammals. Because DNA methylation is preserved during DNA replication it can be inherited. Thus, DNA methylation could be a major mechanism by which to produce semi-stable changes in gene expression in somatic tissues. Although it remains controversial whether germ-line DNA methylation in mammalian genomes is stably heritable, frequent tissue-specific and disease-specific de novo methylation events are observed during somatic cell development/differentiation. In this minireview, we discuss the use of restriction landmark genomic scanning, together with in silico analysis, to identify differentially methylated regions in the mammalian genome. We then present a rough overview of quantitative DNA methylation patterns at 4600 NotI sites and more than 150 differentially methylated regions in several C57BL/6J mouse tissues. Comparative analysis between mice and humans suggests that some, but not all, tissue-specific differentially methylated regions are conserved. A deeper understanding of cell-type-specific differences in DNA methylation might lead to a better illustration of the mechanisms behind tissue-specific differentiation in mammals.  相似文献   

18.
Comprehensive High-throughput Arrays for Relative Methylation (CHARM) was recently developed as an experimental platform and analytic approach to assess DNA methylation (DNAm) at a genome-wide level. Its initial implementation was for human and mouse. We adapted it for rat and sought to examine DNAm differences across tissues and brain regions in this model organism. We extracted DNA from liver, spleen, and three brain regions: cortex, hippocampus, and hypothalamus from adult Sprague Dawley rats. DNA was digested with McrBC, and the resulting methyl-depleted fraction was hybridized to the rat CHARM array along with a mock-treated fraction. Differentially methylated regions (DMRs) between tissue types were detected using normalized methylation log-ratios. In validating 24 of the most significant DMRs by bisulfite pyrosequencing, we detected large mean differences in DNAm, ranging from 33-59%, among the most significant DMRs in the across-tissue comparisons. The comparable figures for the hippocampus vs. hypothalamus DMRs were 14-40%, for the cortex vs. hippocampus DMRs, 12-29%, and for the cortex vs. hypothalamus DMRs, 5-35%, with a correlation of r(2) = 0.92 between the methylation differences in 24 DMRs predicted by CHARM and those validated by bisulfite pyrosequencing. Our adaptation of the CHARM array for the rat genome yielded highly robust results that demonstrate the value of this method in detecting substantial DNAm differences between tissues and across different brain regions. This platform should prove valuable in future studies aimed at examining DNAm differences in particular brain regions of rats exposed to environmental stimuli with potential epigenetic consequences.  相似文献   

19.
《Epigenetics》2013,8(11):1378-1390
Comprehensive High-throughput Arrays for Relative Methylation (CHARM) was recently developed as an experimental platform and analytic approach to assess DNA methylation (DNAm) at a genome-wide level. Its initial implementation was for human and mouse. We adapted it for rat and sought to examine DNAm differences across tissues and brain regions in this model organism. We extracted DNA from liver, spleen, and three brain regions: cortex, hippocampus, and hypothalamus from adult Sprague Dawley rats. DNA was digested with McrBC, and the resulting methyl-depleted fraction was hybridized to the rat CHARM array along with a mock-treated fraction. Differentially methylated regions (DMRs) between tissue types were detected using normalized methylation log-ratios. In validating 24 of the most significant DMRs by bisulfite pyrosequencing, we detected large mean differences in DNAm, ranging from 33-59%, among the most significant DMRs in the across-tissue comparisons. The comparable figures for the hippocampus vs. hypothalamus DMRs were 14-40%, for the cortex vs. hippocampus DMRs, 12-29%, and for the cortex vs. hypothalamus DMRs, 5-35%, with a correlation of r2 = 0.92 between the methylation differences in 24 DMRs predicted by CHARM and those validated by bisulfite pyrosequencing. Our adaptation of the CHARM array for the rat genome yielded highly robust results that demonstrate the value of this method in detecting substantial DNAm differences between tissues and across different brain regions. This platform should prove valuable in future studies aimed at examining DNAm differences in particular brain regions of rats exposed to environmental stimuli with potential epigenetic consequences.  相似文献   

20.
DNA methylation and tissue culture-induced variation in plants   总被引:6,自引:0,他引:6  
Summary Plant cells growing in an artificial culture environment make numerous genetic mistakes. These alterations are manifested as increased frequencies of single-gene mutations, chromosome breakages, transposable element activations, quantitative trait variations, and modifications of normal DNA methylation patterns. Evidence is presented that indicates a high frequency of DNA hypomethylation as the result of the tissue culture process. Fifteen percent of the methylation changes appear to have been homozygous in the original regenerated plants. A hypothesis is advanced that relates DNA methylation to the variety of genetic alterations found among maize tissue culture regenerants and their progenies. The epigenetic nature of DNA methylation raises questions concerning the stability of tissue culture-induced changes in self-pollinations and crosses. Presented in the Session-in-Depth Exploitation of Plant Cell Culture Variants at the 1992 World Congress on Cell and Tissue Culture, Washington, DC, June 20&#x2013;25, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号