首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcellular localization of a wheat NHX antiporter, TaNHX2, was studied in Arabidopsis protoplasts, and its function was evaluated using Saccharomyces cerevisiae as a heterologous expression system. Fluorescence patterns of TaNHX2-GFP fusion protein in Arabidopsis cells indicated that TaNHX2 localized at endomembranes. TaNHX2 has significant sequence homology to NHX sodium exchangers from Arabidopsis, is abundant in roots and leaves and is induced by salt or dehydration treatments. Western blot analysis showed that TaNHX2 could be expressed in transgenic yeast cells. Expressed TaNHX2 protein suppressed the salt sensitivity of a yeast mutant strain by increasing its K+ content when exposed to salt stress. TaNHX2 also increased the tolerance of the strain to potassium stress. However, the expression of TaNHX2 did not affect the sodium concentration in transgenic cells. Western blot analysis for tonoplast proteins indicated that the TaNHX2 protein localized at the tonoplast of transgenic yeast cells. The tonoplast vesicles from transgenic yeast cells displayed enhanced K+/H+ exchange activity but very little Na+/H+ exchange compared with controls transformed with the empty vector; Na+/H+ exchange was not detected with concentrations of less than 37.5 mM Na+ in the reaction medium. Our data suggest that TaNHX2 is a endomembrane-bound protein and may primarily function as a K+/H+ antiporter, which is involved in cellular pH regulation and potassium nutrition under normal conditions. Under saline conditions, the protein mediates resistance to salt stress through the intracellular compartmentalization of potassium to regulate cellular pH and K+ homeostasis.  相似文献   

2.
A vacuole Na+/H+ antiporter gene TaNHX2 was obtained by screening the wheat cDNA library and by the 5′-RACE method. The expression of TaNHX2 was induced in roots and leaves by treatment with NaCl, polyethylene glycol (PEG), cold and abscisic acid (ABA). When expressed in a yeast mutant (Δnhx1), TaNHX2 suppressed the salt sensitivity of the mutant, which was deficient in vacuolar Na+/H+ antiporter, and caused partial recovery of growth of Δnhx1 in NaCl and LiC1 media. The survival rate of yeast cells was improved by overexpressing the TaNHX2 gene under NaCl, KCl, sorbitol and freezing stresses when compared with the control. The results imply that TaNHX2 might play an important role in salt and osmotic stress tolerance in plant cells.  相似文献   

3.
Salt decreases the uptake of Zn and other minerals and causes nutritional disorders in plants. Zn is an essential micronutrient for all organisms and it is reasonable to hypothesize that Zn status is essential for maintaining salt tolerance in plants. In this study, the physiological and molecular mechanisms of Zn-based alleviation of salt stress in wheat seedlings were investigated. Our results indicate that sufficient Zn nutrition maintained antioxidative enzyme activities and decreased a reactive oxygen species over-accumulation in wheat seedlings. Our data also reveal that sufficient Zn nutrition improved the expression of Na+/H+ antiporter genes, TaSOS1 and TaNHX1, thereby decreasing the Na+ accumulation and subsequently improving salt tolerance in wheat seedlings.  相似文献   

4.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   

5.
Soil salinity is a major environmental stress limiting plant productivity. Vacuole Na+/H+ antiporters play important roles for the survival of plants under salt stress conditions. We have developed salt stress tolerant transgenic tomato plants (Solanum lycopersicum cv. PED) by overexpression of the wheat Na+/H+ antiporter gene TaNHX2 using Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBin438 that contains the TaNHX2 gene under the control of double CaMV 35S promoter and npt II as a selectable marker. PCR and Southern blot analysis confirmed that TaNHX2 gene has been integrated and expressed in the T1 generation transgenic tomato plants. When TaNHX2 expressing plants were exposed to 100 or 150 mM NaCl, they were found to be more tolerant to salt stress compared to wild type plants. Biochemical analyses also showed that transgenic plants have substantial amount of relative water content and chlorophyll content under salt stress conditions compared to wild type plants. The relative water content in transgenic and wild type plants ranged from 68 to 75 % and 46–73 % and chlorophyll content fall in between 1.8 to 2.4 mg/g fw and 1.0 to 2.4 mg/g fw, respectively, in all stress conditions. In the present study, we observed a better germination rate of T1 transgenic seeds under salt stress conditions compared with wild type plants. Our results indicated that TaNHX2-transgenic tomato plants coped better with salt stress than wild type plants.  相似文献   

6.
The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na+/H+ exchangers, K+ efflux antiporters, and cation/H+ exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H+ exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants.  相似文献   

7.
Plant vacuolar Na+/H+ antiporter genes play significant roles in salt tolerance. However, the roles of the chrysanthemum vacuolar Na+/H+ antiporter genes in salt stress response remain obscure. In this study, we isolated and characterized a novel vacuolar Na+/H+ antiporter gene DgNHX1 from chrysanthemum. The DgNHX1 sequence contained 1920 bp with a complete open reading frame of 1533 bp encoding a putative protein of 510 amino acids with a predicted protein molecular weight of 56.3 kDa. DgNHX1 was predicted containing nine transmembrane domains. Its expression in the chrysanthemum was up-regulated by salt stress, but not by abscisic acid (ABA). To assess roles of DgNHX1 in plant salt stress responses, we performed gain-of-function experiment. The DgNHX1-overexpression tobacco plants showed significant salt tolerance than the wild type (WT). The transgenic lines exhibited more accumulation of Na+ and K+ under salt stress. These findings suggest that DgNHX1 plays a positive regulatory role in salt stress response.  相似文献   

8.
9.
10.
The vacuolar-type sodium/proton antiporter is considered to play an important role in withstanding salt stress by transporting sodium ions into vacuoles. In this study, the gene structures of three kinds of vacuolar-type antiporters transcribed in bread wheat under salt stress were analyzed. After spraying 0.5 M NaCl to seedlings of wheat cultivar Chinese Spring, 1,392~1,400 bp cDNA fragments were isolated by RT-PCR using primers designed from common regions in rice OsNHX1 and Atriplex subcordata AgNHX1. Next, the entire structure of the genomic DNA and cDNA were determined via CapFishing-5’ Rapid Amplification of cDNA Ends (RACE), 3’RACE, and genomic PCR cloning. As a result, 3 kinds of vacuolar-type Na+/H+ antiporter genes, TaNHXa (genome DNA 4,255 bp, cDNA 2,414 bp, 539 a.a.), TaNHXb (gDNA 4,167 bp, cDNA 1,898 bp, 539 a.a.) and TaNHXc (gDNA 4,966 bp, cDNA 1,928 bp, 547 a.a.), were identified. They encode 12 transmembrane domains containing third domain’s amyloid binding sites (FFIYLLPP), characteristic of the vacuolar-type Na+/H+ antiporter, binding to the cell vacuolar membrane. TaNHXa, b and c consisting of 14 exons and 13 introns were 22~55 % longer than A. thaliana AtNHX1 in total length. TaNHXa (TaNHX2) showed homogeneity with OsNHX1, while TaNHXb and c were phylogenetically independent.  相似文献   

11.
Mrp antiporters and their homologues in the cation/proton antiporter 3 family of the Membrane Transporter Database are widely distributed in bacteria. They have major roles in supporting cation and cytoplasmic pH homeostasis in many environmental, extremophilic, and pathogenic bacteria. These antiporters require six or seven hydrophobic proteins that form hetero-oligomeric complexes, while most other cation/proton antiporters require only one membrane protein for their activity. The resemblance of three Mrp subunits to membrane-embedded subunits of the NADH:quinone oxidoreductase of respiratory chains and to subunits of several hydrogenases has raised interest in the evolutionary path and commonalities of their proton-translocating domains. In order to move toward a greater mechanistic understanding of these unusual antiporters and to rigorously demonstrate that they function as secondary antiporters, powered by an imposed proton motive force, we established a method for purification and functional reconstitution of the seven-subunit Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4. Na+/H+ antiporter activity was demonstrated by a fluorescence-based assay with proteoliposomes in which the Mrp complex was coreconstituted with a bacterial FoF1-ATPase. Proton pumping by the ATPase upon addition of ATP generated a proton motive force across the membranes that powered antiporter activity upon subsequent addition of Na+.  相似文献   

12.
The role of putative Na+/H+ antiporters encoded by nhaS1 (slr1727), nhaS3 (sll0689), nhaS4 (slr1595), and nhaS5 (slr0415) in salt stress response and internal pH regulation of the cyanobacterium Synechocystis PCC 6803 was investigated. For this purpose the mutants (single, double, and triple) impaired in genes coding for Na+/H+ antiporters were constructed using the method of interposon mutagenesis. PCR analyses of DNA demonstrated that mutations in nhaS1, nhaS4, and nhaS5 genes were segregated completely and the mutants contained only inactivated copies of the corresponding genes. Na+/H+ antiporter encoded by nhaS3 was essential for viability of Synechocystis since no completely segregated mutants were obtained. The steady-state intracellular sodium concentration and Na+/H+ antiporter activities were found to be the same in the wild type and all mutants. No differences were found in the growth rates of wild type and mutants during their cultivation in liquid media supplemented with 0.68 M or 0.85 M NaCl as well as in media buffered at pH 7.0, 8.0, or 9.0. The expression of genes coding for Na+/H+ antiporters was studied. No induction of any Na+/H+ antiporter encoding gene expression was found in wild type or single mutant cells grown under high salt or at different pH values. Nevertheless, in cells of double and triple mutants adapted to high salt or alkaline pH some of the remaining Na+/H+ antiporter encoding genes showed induction. These results might indicate that some of Na+/H+ antiporters can functionally replace each other under stress conditions in Synechocystis cells lacking the activity of more than one antiporter.  相似文献   

13.
In plant cells, the plasma membrane Na+/H+ antiporter SOS1 (salt overly sensitive 1) mediates Na+ extrusion using the proton gradient generated by plasma membrane H+-ATPases, and these two proteins are key plant halotolerance factors. In the present study, two genes from Sesuvium portulacastrum, encoding plasma membrane Na+/H+ antiporter (SpSOS1) and H+-ATPase (SpAHA1), were cloned. Localization of each protein was studied in tobacco cells, and their functions were analyzed in yeast cells. Both SpSOS1 and SpAHA1 are plasma membrane-bound proteins. Real-time polymerase chain reaction (PCR) analyses showed that SpSOS1 and SpAHA1 were induced by salinity, and their expression patterns in roots under salinity were similar. Compared with untransformed yeast cells, SpSOS1 increased the salt tolerance of transgenic yeast by decreasing the Na+ content. The Na+/H+ exchange activity at plasma membrane vesicles was higher in SpSOS1-transgenic yeast than in the untransformed strain. No change was observed in the salt tolerance of yeast cells expressing SpAHA1 alone; however, in yeast transformed with both SpSOS1 and SpAHA1, SpAHA1 generated an increased proton gradient that stimulated the Na+/H+ exchange activity of SpSOS1. In this scenario, more Na+ ions were transported out of cells, and the yeast cells co-expressing SpSOS1 and SpAHA1 grew better than the cells transformed with only SpSOS1 or SpAHA1. These findings demonstrate that the plasma membrane Na+/H+ antiporter SpSOS1 and H+-ATPase SpAHA1 can function in coordination. These results provide a reference for developing more salt-tolerant crops via co-transformation with the plasma membrane Na+/H+ antiporter and H+-ATPase.  相似文献   

14.
Regulation of intracellular pH is critical for the maintenance of cell homeostasis in response to stress. We used yeast two-hybrid screening to identify novel interacting partners of the pH-regulating transporter NBCe1-B. We identified Hsp70-like stress 70 protein chaperone (STCH) as interacting with NBCe1-B at the N-terminal (amino acids 96–440) region. Co-injection of STCH and NBCe1-B cRNA into Xenopus oocytes significantly increased surface expression of NBCe1-B and enhanced bicarbonate conductance compared with NBCe1-B cRNA alone. STCH siRNA decreased the rate of Na+-dependent pHi recovery from NH4+ pulse-induced acidification in an HSG (human submandibular gland ductal) cell line. We observed that in addition to NBCe1-B, Na+/H+ exchanger (NHE)-dependent pHi recovery was also impaired by STCH siRNA and further confirmed the interaction of STCH with NHE1 but not plasma membrane Ca2+ ATPase. Both NBCe1-B and NHE1 interactions were dependent on a specific 45-amino acid region of STCH. In conclusion, we identify a novel role of STCH in the regulation of pHi through site-specific interactions with NBCe1-B and NHE1 and subsequent modulation of membrane transporter expression. We propose STCH may play a role in pHi regulation at times of cellular stress by enhancing the recovery from intracellular acidification.  相似文献   

15.
《Genomics》2021,113(4):1940-1951
Na+, K+ and pH homeostasis are important for plant life and they are controlled by the monovalent cation proton antiporter (CPA) superfamily. The roles of ZmCPAs in salt tolerance are not fully elucidated. In this study, we identified 35 ZmCPAs comprising 13 Na+/H+ exchangers (ZmNHXs), 16 cation/H+ exchanger (ZmCHXs), and 6 K+ efflux antiporters (ZmKEAs). All ZmCPAs have transmembrane domains and most of them were localized to plasma membrane or tonoplast. ZmCHXs were specifically highly expressed in anthers, while ZmNHXs and ZmKEAs showed high expression in various tissues. ZmNHX5 and ZmKEA2 were up-regulated in maize seedlings under both NaCl and KCl stresses. Yeast complementation experiments revealed the roles of ZmNHX5, ZmKEA2 in NaCl tolerance. Analysis of the maize mutants further validated the salt tolerance functions of ZmNHX5 and ZmKEA2. Our study highlights comprehensive information of ZmCPAs and provides new gene targets for salt tolerance maize breeding.  相似文献   

16.
It is well known that nitric oxide (NO) enhances salt tolerance of glycophytes. However, the effect of NO on modulating ionic balance in halophytes is not very clear. This study focuses on the role of NO in mediating K+/Na+ balance in a mangrove species, Kandelia obovata Sheue, Liu and Yong. We first analyzed the effects of sodium nitroprusside (SNP), an NO donor, on ion content and ion flux in the roots of K. obovata under high salinity. The results showed that 100 μM SNP significantly increased K+ content and Na+ efflux, but decreased Na+ content and K+ efflux. These effects of NO were reversed by specific NO synthesis inhibitor and scavenger, which confirmed the role of NO in retaining K+ and reducing Na+ in K. obovata roots. Using western-blot analysis, we found that NO increased the protein expression of plasma membrane (PM) H+-ATPase and vacuolar Na+/H+ antiporter, which were crucial proteins for ionic balance. To further clarify the molecular mechanism of NO-modulated K+/Na+ balance, partial cDNA fragments of inward-rectifying K+ channel, PM Na+/H+ antiporter, PM H+-ATPase, vacuolar Na+/H+ antiporter and vacuolar H+-ATPase subunit c were isolated. Results of quantitative real-time PCR showed that NO increased the relative expression levels of these genes, while this increase was blocked by NO synthesis inhibitors and scavenger. Above results indicate that NO greatly contribute to K+/Na+ balance in high salinity-treated K. obovata roots, by activating AKT1-type K+ channel and Na+/H+ antiporter, which are the critical components in K+/Na+ transport system.  相似文献   

17.
Na+,K+/H+ antiporters are H+-coupled cotransporters that are crucial for cellular homeostasis. Populus euphratica, a well-known tree halophyte, contains six Na+/H+ antiporter genes (PeNHX1-6) that have been shown to function in salt tolerance. However, the catalytic mechanisms governing their ion transport remain largely unknown. Using the crystal structure of the Na+/H+ antiporter from the Escherichia coli (EcNhaA) as a template, we built the three-dimensional structure of PeNHX3 from P. euphratica. The PeNHX3 model displays the typical TM4-TM11 assembly that is critical for ion binding and translocation. The PeNHX3 structure follows the ‘positive-inside’ rule and exhibits a typical physicochemical property of the transporter proteins. Four conserved residues, including Tyr149, Asn187, Asp188, and Arg356, are indentified in the TM4-TM11 assembly region of PeNHX3. Mutagenesis analysis showed that these reserved residues were essential for the function of PeNHX3: Asn187 and Asp188 (forming a ND motif) controlled ion binding and translocation, and Tyr149 and Arg356 compensated helix dipoles in the TM4-TM11 assembly. PeNHX3 mediated Na+, K+ and Li+ transport in a yeast growth assay. Domain-switch analysis shows that TM11 is crucial to Li+ transport. The novel features of PeNHX3 in ion binding and translocation are discussed.  相似文献   

18.
19.
Salt tolerance genes constitute an important class of loci in plant genomes. Little is known about the extent to which natural selection in saline environments has acted upon these loci, and what types of nucleotide diversity such selection has given rise to. Here, we surveyed genetic diversity in three types of Na+/H+ antiporter gene (SOS, NhaD, and NHX, belonging to the cation/proton antiporter 1 family), which have well ‐ characterized essential roles in plant salt tolerance. Ten Na+/H+ antiporter genes and 16 neutral loci randomly selected as controls were sequenced from 17 accessions of two closely related members of the genus Populus, Populus euphratica and Populus pruinosa, section Turanga, which are native to northwest China. The results show that salt tolerance genes are common targets of natural selection in P. euphratica and P. pruinosa. Moreover, the patterns of nucleotide variation across the three types of Na+/H+ antiporter gene are distinctly different in these two closely related Populus species, and gene flow from P. pruinosa to P. euphratica is highly restricted. Our results suggest that natural selection played an important role in shaping the current distinct patterns of Na+/H+ antiporter genes, resulting in adaptive evolution in P. euphratica and P. pruinosa.  相似文献   

20.
The cation/H+ exchange is a basic process in transmembrane transport. The acquisition of genome sequences has now established that plants possess genes encoding a large number of cation/proton antiporter 1 (CPA1) proteins, few of which have been characterized with respect to their contribution to ion homeostasis. The CPA1s comprise plasma membrane, vacuolar, and endosomal forms, and they have been identified as important for a salinity tolerance. They are, however, also involved in both the control of cellular pH and K+ homeostasis, and regulate processes over a wide range of physiological events, from vesicle trafficking to development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号