首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Researchers have assembled thousands of eukaryotic genomes using Illumina reads, but traditional mate‐pair libraries cannot span all repetitive elements, resulting in highly fragmented assemblies. However, both chromosome conformation capture techniques, such as Hi‐C and Dovetail Genomics Chicago libraries and long‐read sequencing, such as Pacific Biosciences and Oxford Nanopore, help span and resolve repetitive regions and therefore improve genome assemblies. One important livestock species of arid regions that does not have a high‐quality contiguous reference genome is the dromedary (Camelus dromedarius). Draft genomes exist but are highly fragmented, and a high‐quality reference genome is needed to understand adaptation to desert environments and artificial selection during domestication. Dromedaries are among the last livestock species to have been domesticated, and together with wild and domestic Bactrian camels, they are the only representatives of the Camelini tribe, which highlights their evolutionary significance. Here we describe our efforts to improve the North African dromedary genome. We used Chicago and Hi‐C sequencing libraries from Dovetail Genomics to resolve the order of previously assembled contigs, producing almost chromosome‐level scaffolds. Remaining gaps were filled with Pacific Biosciences long reads, and then scaffolds were comparatively mapped to chromosomes. Long reads added 99.32 Mbp to the total length of the new assembly. Dovetail Chicago and Hi‐C libraries increased the longest scaffold over 12‐fold, from 9.71 Mbp to 124.99 Mbp and the scaffold N50 over 50‐fold, from 1.48 Mbp to 75.02 Mbp. We demonstrate that Illumina de novo assemblies can be substantially upgraded by combining chromosome conformation capture and long‐read sequencing.  相似文献   

2.

Background

Long-read sequencing technologies were launched a few years ago, and in contrast with short-read sequencing technologies, they offered a promise of solving assembly problems for large and complex genomes. Moreover by providing long-range information, it could also solve haplotype phasing. However, existing long-read technologies still have several limitations that complicate their use for most research laboratories, as well as in large and/or complex genome projects. In 2014, Oxford Nanopore released the MinION® device, a small and low-cost single-molecule nanopore sequencer, which offers the possibility of sequencing long DNA fragments.

Results

The assembly of long reads generated using the Oxford Nanopore MinION® instrument is challenging as existing assemblers were not implemented to deal with long reads exhibiting close to 30% of errors. Here, we presented a hybrid approach developed to take advantage of data generated using MinION® device. We sequenced a well-known bacterium, Acinetobacter baylyi ADP1 and applied our method to obtain a highly contiguous (one single contig) and accurate genome assembly even in repetitive regions, in contrast to an Illumina-only assembly. Our hybrid strategy was able to generate NaS (Nanopore Synthetic-long) reads up to 60 kb that aligned entirely and with no error to the reference genome and that spanned highly conserved repetitive regions. The average accuracy of NaS reads reached 99.99% without losing the initial size of the input MinION® reads.

Conclusions

We described NaS tool, a hybrid approach allowing the sequencing of microbial genomes using the MinION® device. Our method, based ideally on 20x and 50x of NaS and Illumina reads respectively, provides an efficient and cost-effective way of sequencing microbial or small eukaryotic genomes in a very short time even in small facilities. Moreover, we demonstrated that although the Oxford Nanopore technology is a relatively new sequencing technology, currently with a high error rate, it is already useful in the generation of high-quality genome assemblies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1519-z) contains supplementary material, which is available to authorized users.  相似文献   

3.
《Genomics》2021,113(3):1366-1377
Oxford Nanopore sequencing has been widely used to achieve complete genomes of bacterial pathogens. However, the error rates of Oxford Nanopore long reads are high. Various polishing algorithms using Illumina short reads to correct the errors in Oxford Nanopore long-read assemblies have been developed. The impact of polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads on improving genomic analyses was evaluated using both simulated and real reads. Ten species (10 strains) were selected for simulated reads, while real reads were tested on 11 species (11 strains). Oxford Nanopore long reads were assembled with Unicycler to produce a draft assembly, followed by three rounds of polishing with Illumina short reads using two polishing tools, Pilon and NextPolish. One round of NextPolish polishing generated genome completeness and accuracy parameters similar to the reference genomes, whereas two or three rounds of Pilon polishing were needed, though contiguity remained unchanged after polishing. The polished assemblies of Escherichia coli O157:H7, Salmonella Typhimurium, and Cronobacter sakazakii with simulated reads did not provide accurate plasmid identifications. One round of NextPolish polishing was needed for accurately identifying plasmids in Staphylococcus aureus and E. coli O26:H11 with real reads, whereas one and two rounds of Pilon polishing were necessary for these two strains, respectively. Polishing failed to provide an accurate antimicrobial resistance (AMR) genotype for S. aureus with real reads. One round of polishing recovered an accurate AMR genotype for Klebsiella pneumoniae with real reads. The reference genome and draft assembly of Citrobacter braakii with real reads differed, which carried blaCMY-83 and fosA6, respectively, while both genes were present after one round of polishing. However, polishing did not improve the assembly of E. coli O26:H11 with real reads to achieve numbers of virulence genes similar to the reference genome. The draft and polished assemblies showed a phylogenetic tree topology comparable with the reference genomes. For multilocus sequence typing and pan-genome analyses, one round of NextPolish polishing was sufficient to obtain accurate results, while two or three rounds of Pilon polishing were needed. Overall, NextPolish outperformed Pilon for polishing the Oxford Nanopore long-read assemblies of bacterial pathogens, though both polishing strategies improved genomic analyses compared to the draft assemblies.  相似文献   

4.
《Genomics》2020,112(1):545-551
Oxford Nanopore MinION sequencing technology has been gaining immense importance in identification of pathogen and antimicrobial resistance, though with 10–15% error rate. Short read technologies generates high accurate genome but with multiple fragments of genome. This study proposes a novel workflow to reduce the indels resulted from MinION long read sequencing by overlaying short read sequences from IonTorrent in the clinical isolates. Best of both techniques were employed which generated highly accurate-single chromosomal microbial genomes with increase in completeness of genomes from 44.5%, 30% and 43% to 98.6%, 98.6% and 96.6% for P. aeruginosa, A. veronii and B. pertussis respectively. To the best of our knowledge, this is the first study to generate a hybrid of IonTorrent and MinION reads to obtain single chromosomal genomes. This would enable to precisely infer both structural arrangement of genes and SNP based analysis for phylogenetic information.  相似文献   

5.
Although new and emerging next-generation sequencing (NGS) technologies have reduced sequencing costs significantly, much work remains to implement them for de novo sequencing of complex and highly repetitive genomes such as the tetraploid genome of Upland cotton (Gossypium hirsutum L.). Herein we report the results from implementing a novel, hybrid Sanger/454-based BAC-pool sequencing strategy using minimum tiling path (MTP) BACs from Ctg-3301 and Ctg-465, two large genomic segments in A12 and D12 homoeologous chromosomes (Ctg). To enable generation of longer contig sequences in assembly, we implemented a hybrid assembly method to process ~35x data from 454 technology and 2.8-3x data from Sanger method. Hybrid assemblies offered higher sequence coverage and better sequence assemblies. Homology studies revealed the presence of retrotransposon regions like Copia and Gypsy elements in these contigs and also helped in identifying new genomic SSRs. Unigenes were anchored to the sequences in Ctg-3301 and Ctg-465 to support the physical map. Gene density, gene structure and protein sequence information derived from protein prediction programs were used to obtain the functional annotation of these genes. Comparative analysis of both contigs with Arabidopsis genome exhibited synteny and microcollinearity with a conserved gene order in both genomes. This study provides insight about use of MTP-based BAC-pool sequencing approach for sequencing complex polyploid genomes with limited constraints in generating better sequence assemblies to build reference scaffold sequences. Combining the utilities of MTP-based BAC-pool sequencing with current longer and short read NGS technologies in multiplexed format would provide a new direction to cost-effectively and precisely sequence complex plant genomes.  相似文献   

6.
Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC) clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum). Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs <2 kb long, to dramatically improve the assembly from 75% to 95% complete.  相似文献   

7.
8.
Settleability of particles in activated sludge systems can be impaired by an overgrowth of filamentous bacteria, a problem known as bulking. These filaments are often members of the phylum Chloroflexi, sometimes reaching abundances in excess of 30% of the biovolume. The uncultured Chloroflexi phylotype, Candidatus Amarolinea, has been observed in high abundances in Danish full-scale activated sludge systems by 16S rRNA gene amplicon surveys, where it has been associated with bulking. In this study, fluorescence in situ hybridization was applied to confirm their high abundance, filamentous morphology, and contribution to the interfloc bridging that characterizes filamentous bulking. Furthermore, genome-centric metagenomics using both Illumina and Oxford Nanopore sequencing was used to obtain a near complete population genome (5.7 Mbp) of the Ca. Amarolinea phylotype, which belongs to the proposed novel family Amarolineaceae within the order Caldilineales of Chloroflexi. Annotation of the genome indicated that the phylotype is capable of aerobic respiration, fermentation, and dissimilatory nitrate reduction to ammonia. The genome sequence also gives a better insight into the phylogenetic and evolutionary relationships of the organism. The name Candidatus Amarolinea aalborgensis is proposed for the species.  相似文献   

9.
Among the Eukaryotes, Fungi have relatively small genomes (average of 44.2 Mbp across 1850 species). The order Pucciniales (Basidiomycota) has the largest average genome size among fungi (305 Mbp), and includes the two largest fungal genomes reported so far (Puccinia chrysanthemi and Gymnosporangium confusum, with 806.5 and 893.2 Mbp, respectively). In this work, flow cytometry was employed to determine the genome size of the Bidens pilosa rust pathogen, Uromyces bidentis. The results obtained revealed that U. bidentis presents a surprisingly large haploid genome size of 2489 Mbp. This value is almost three times larger than the previous largest fungal genome reported and over 50 times larger than the average fungal genome size. Microscopic examination of U. bidentis nuclei also showed that they are not as different in size from the B. pilosa nuclei when compared with the differences between other rusts and their host plants. This result further reinforces the position of the Pucciniales as the fungal group with the largest genomes, prompting studies addressing the role of repetitive elements and polyploidy in the evolution, pathological specialization and diversity of fungal species.  相似文献   

10.
Projector was designed for automatic positioning of contigs from an unfinished prokaryotic genome onto a template genome of a closely related strain or species. Projector mapped 84 contigs of Lactococcus lactis MG1363 (corresponding to 81% of the assembly nucleotides) against the genome of L.lactis IL1403. Ninety three percent of subsequent gap closure PCRs were successful. Moreover, a significant improvement in the N50 and N80 values (describing the assembly quality) was observed after the use of Projector. Because increasing numbers of bacterial genomes are being sequenced, Projector provides an efficient method to close a significant number of remaining gaps in the late stages of a genome sequencing project.  相似文献   

11.
As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5–5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark''s Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.  相似文献   

12.
13.

Background

Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes.

Methodology/Principal Findings

We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes.

Conclusion

The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.  相似文献   

14.
《Genomics》2022,114(6):110514
Omphalotus guepiniiformis, a bioluminescent mushroom species, is a source of the potentially valuable anticancer chemical. To provide genome information, we de novo assembled the high-quality O. guepiniiformis genome using two Next-Generation sequencing techniques, PacBio and Illumina sequencing. Our draft O. guepiniiformis genome comprises 42.5 Mbp of sequence with only 80 contigs and an N50 sequence length of over 1 Mbp. There were 15,554 predicted coding genes, and 7693 genes were functionally annotated with Gene Ontology terms. We performed a genomic study focusing on mushroom bioluminescent pathway cluster genes by comparing 17 luminescent and 23 non-luminescent Agaricales species belonging to 23 genera. Synteny analysis of genomic regions near the luminescent pathway cluster genes inferred that the Omphalotus lineage was genus-specific. In summary, our de novo assembled O. guepiniiformis genome provides significant biological insights into this organism, including the evolution of the luciferase gene block, and forms the basis for future analyses.  相似文献   

15.
The Arabidopsis genome (about 130 Mbp) has been completely sequenced; whereas a draft sequence of the rice genome (about 430 Mbp) is now available and the sequencing of this genome will be completed in the near future. The much larger genomes of several important crop species, such as wheat (about 16,000 Mbp) or maize (about 2500 Mbp), may not be fully sequenced with current technology. Instead, sequencing-analysis strategies are being developed to obtain sequencing and mapping information selectively for the genic fraction (gene space) of complex plant genomes.  相似文献   

16.

Background

Despite the short length of their reads, micro-read sequencing technologies have shown their usefulness for de novo sequencing. However, especially in eukaryotic genomes, complex repeat patterns are an obstacle to large assemblies.

Principal Findings

We present a novel heuristic algorithm, Pebble, which uses paired-end read information to resolve repeats and scaffold contigs to produce large-scale assemblies. In simulations, we can achieve weighted median scaffold lengths (N50) of above 1 Mbp in Bacteria and above 100 kbp in more complex organisms. Using real datasets we obtained a 96 kbp N50 in Pseudomonas syringae and a unique 147 kbp scaffold of a ferret BAC clone. We also present an efficient algorithm called Rock Band for the resolution of repeats in the case of mixed length assemblies, where different sequencing platforms are combined to obtain a cost-effective assembly.

Conclusions

These algorithms extend the utility of short read only assemblies into large complex genomes. They have been implemented and made available within the open-source Velvet short-read de novo assembler.  相似文献   

17.

Background

The availability of diverse second- and third-generation sequencing technologies enables the rapid determination of the sequences of bacterial genomes. However, identifying the sequencing technology most suitable for producing a finished genome with multiple chromosomes remains a challenge. We evaluated the abilities of the following three second-generation sequencers: Roche 454 GS Junior (GS Jr), Life Technologies Ion PGM (Ion PGM), and Illumina MiSeq (MiSeq) and a third-generation sequencer, the Pacific Biosciences RS sequencer (PacBio), by sequencing and assembling the genome of Vibrio parahaemolyticus, which consists of a 5-Mb genome comprising two circular chromosomes.

Results

We sequenced the genome of V. parahaemolyticus with GS Jr, Ion PGM, MiSeq, and PacBio and performed de novo assembly with several genome assemblers. Although GS Jr generated the longest mean read length of 418 bp among the second-generation sequencers, the maximum contig length of the best assembly from GS Jr was 165 kbp, and the number of contigs was 309. Single runs of Ion PGM and MiSeq produced data of considerably greater sequencing coverage, 279× and 1,927×, respectively. The optimized result for Ion PGM contained 61 contigs assembled from reads of 77× coverage, and the longest contig was 895 kbp in size. Those for MiSeq were 34 contigs, 58× coverage, and 733 kbp, respectively. These results suggest that higher coverage depth is unnecessary for a better assembly result. We observed that multiple rRNA coding regions were fragmented in the assemblies from the second-generation sequencers, whereas PacBio generated two exceptionally long contigs of 3,288,561 and 1,875,537 bps, each of which was from a single chromosome, with 73× coverage and mean read length 3,119 bp, allowing us to determine the absolute positions of all rRNA operons.

Conclusions

PacBio outperformed the other sequencers in terms of the length of contigs and reconstructed the greatest portion of the genome, achieving a genome assembly of “finished grade” because of its long reads. It showed the potential to assemble more complex genomes with multiple chromosomes containing more repetitive sequences.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-699) contains supplementary material, which is available to authorized users.  相似文献   

18.
Disease associated chromosomal rearrangements often have break points located within disease causing genes or in their vicinity. The purpose of this study is to characterize a balanced reciprocal translocation in a girl with intellectual disability and seizures by positional cloning and whole genome sequencing. The translocation was identification by G- banding and confirmed by WCP FISH. Fine mapping using BAC clones and whole genome sequencing using Oxford nanopore long read sequencing technology for a 1.46 X coverage of the genome was done. The positional cloning showed split signals with BAC RP11-943 J20. Long read sequencing analysis of chimeric reads carrying parts of chromosomes X and 20 helped to identify the breakpoints to be in intron 2 of ARHGEF9 gene on Xp11.1 and on 20p13 between RASSF2 and SLC23A2 genes. This is the first report of translocation which successfully delineated to single base resolution using Nanopore sequencing. The genotype-phenotype correlation is discussed.  相似文献   

19.
The red‐spotted grouper Epinephelus akaara (E. akaara) is one of the most economically important marine fish in China, Japan and South‐East Asia and is a threatened species. The species is also considered a good model for studies of sex inversion, development, genetic diversity and immunity. Despite its importance, molecular resources for E. akaara remain limited and no reference genome has been published to date. In this study, we constructed a chromosome‐level reference genome of E. akaara by taking advantage of long‐read single‐molecule sequencing and de novo assembly by Oxford Nanopore Technology (ONT) and Hi‐C. A red‐spotted grouper genome of 1.135 Gb was assembled from a total of 106.29 Gb polished Nanopore sequence (GridION, ONT), equivalent to 96‐fold genome coverage. The assembled genome represents 96.8% completeness (BUSCO) with a contig N50 length of 5.25 Mb and a longest contig of 25.75 Mb. The contigs were clustered and ordered onto 24 pseudochromosomes covering approximately 95.55% of the genome assembly with Hi‐C data, with a scaffold N50 length of 46.03 Mb. The genome contained 43.02% repeat sequences and 5,480 noncoding RNAs. Furthermore, combined with several RNA‐seq data sets, 23,808 (99.5%) genes were functionally annotated from a total of 23,923 predicted protein‐coding sequences. The high‐quality chromosome‐level reference genome of E. akaara was assembled for the first time and will be a valuable resource for molecular breeding and functional genomics studies of red‐spotted grouper in the future.  相似文献   

20.

Background

More than 20% of the world’s population is at risk for infection by filarial nematodes and >180 million people worldwide are already infected. Along with infection comes significant morbidity that has a socioeconomic impact. The eight filarial nematodes that infect humans are Wuchereria bancrofti, Brugia malayi, Brugia timori, Onchocerca volvulus, Loa loa, Mansonella perstans, Mansonella streptocerca, and Mansonella ozzardi, of which three have published draft genome sequences. Since all have humans as the definitive host, standard avenues of research that rely on culturing and genetics have often not been possible. Therefore, genome sequencing provides an important window into understanding the biology of these parasites. The need for large amounts of high quality genomic DNA from homozygous, inbred lines; the availability of only short sequence reads from next-generation sequencing platforms at a reasonable expense; and the lack of random large insert libraries has limited our ability to generate high quality genome sequences for these parasites. However, the Pacific Biosciences single molecule, real-time sequencing platform holds great promise in reducing input amounts and generating sufficiently long sequences that bypass the need for large insert paired libraries.

Results

Here, we report on efforts to generate a more complete genome assembly for L. loa using genetically heterogeneous DNA isolated from a single clinical sample and sequenced on the Pacific Biosciences platform. To obtain the best assembly, numerous assemblers and sequencing datasets were analyzed, combined, and compared. Quiver-informed trimming of an assembly of only Pacific Biosciences reads by HGAP2 was selected as the final assembly of 96.4 Mbp in 2,250 contigs. This results in ~9% more of the genome in ~85% fewer contigs from ~80% less starting material at a fraction of the cost of previous Roche 454-based sequencing efforts.

Conclusions

The result is the most complete filarial nematode assembly produced thus far and demonstrates the utility of single molecule sequencing on the Pacific Biosciences platform for genetically heterogeneous metazoan genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-788) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号