首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the individual cells. In order to more accurately identify the genes and pathways involved in the initiation of this multicellular developmental program in M. xanthus, we adapted a method of growing vegetative populations within a constant controllable environment by using flow cell bioreactors, or flow cells. By establishing an M. xanthus community within a flow cell, we are able to test developmental responses to changes in the environment with fewer concerns for effects due to nutrient depletion or bacterial waste production. This approach allows for greater sensitivity in investigating communal environmental responses, such as nutrient sensing. To demonstrate the versatility of our growth environment, we carried out time-lapse confocal laser scanning microscopy to visualize M. xanthus biofilm growth and fruiting body development, as well as fluorescence staining of exopolysaccharides deposited by biofilms. We also employed the flow cells in a nutrient titration to determine the minimum concentration required to sustain vegetative growth. Our data show that by using a flow cell, M. xanthus can be held in a vegetative growth state at low nutrient concentrations for long periods, and then, by slightly decreasing the nutrient concentration, cells can be allowed to initiate the developmental program.  相似文献   

2.
Under conditions of nutrient deprivation, Myxococcus xanthus undergoes a developmental process that results in the formation of a fruiting body containing environmentally resistant myxospores. We have shown that myxospores contain two copies of the genome, suggesting that cells must replicate the genome prior to or during development. To further investigate the role of DNA replication in development, a temperature-sensitive dnaB mutant, DnaBA116V, was isolated from M. xanthus. Unlike what happens in Escherichia coli dnaB mutants, where DNA replication immediately halts upon a shift to a nonpermissive temperature, growth and DNA replication of the M. xanthus mutant ceased after one cell doubling at a nonpermissive temperature, 37°C. We demonstrated that at the nonpermissive temperature the DnaBA116V mutant arrested as a population of 1n cells, implying that these cells could complete one round of the cell cycle but did not initiate new rounds of DNA replication. In developmental assays, the DnaBA116V mutant was unable to develop into fruiting bodies and produced fewer myxospores than the wild type at the nonpermissive temperature. However, the mutant was able to undergo development when it was shifted to a permissive temperature, suggesting that cells had the capacity to undergo DNA replication during development and to allow the formation of myxospores.  相似文献   

3.
Myxococcus xanthus is a gram-negative bacterium with a complex life cycle including a developmental phase in which cells aggregate and sporulate in response to starvation. In previous papers, we have described a heretofore unsuspected layer of complexity in the development of M. xanthus: vegetatively growing cells differentiate into two cell types during development. In addition to the differentiation of spores within fruiting bodies, a second cell type, peripheral rods, arises outside fruiting bodies. The pattern of expression of proteins in peripheral rods is different from that of either vegetatively growing cells or spores, and peripheral rods express a number of recognized developmental markers. In this report, we examine four aspects of the biology of peripheral rods: (i) the influence of nutrients on the proportion of peripheral rods in a population of developing cells, (ii) the capacity of peripheral rods to recapitulate development, (iii) the development of peripheral rods on conditioned medium, and (iv) the ability of peripheral rods to resume growth on low amounts of exogenously added nutrients. The results of these studies suggest that peripheral rods play a significant role in the life cycle of M. xanthus by allowing the exploitation of low amounts or transient influxes of nutrients without the investment of energy in spore germination. The differentiation of vegetatively growing cells into two cell types that differ significantly in biology, shape, and localization within the population has been incorporated into a model of the life cycle of M. xanthus.  相似文献   

4.
Exopolysaccharide (EPS) of Myxococcus xanthus is a well-regulated cell surface component. In addition to its known functions for social motility and fruiting body formation on solid surfaces, EPS has also been proposed to play a role in multi-cellular clumping in liquid medium, though this phenomenon has not been well studied. In this report, we confirmed that M. xanthus clumps formed in liquid were correlated with EPS levels and demonstrated that the EPS encased cell clumps exhibited biofilm-like structures. The clumps protected the cells at physiologically relevant EPS concentrations, while cells lacking EPS exhibited significant reduction in long-term viability and resistance to stressful conditions. However, excess EPS production was counterproductive to vegetative growth and viable cell recovery declined in extended late stationary phase as cells became trapped in the matrix of clumps. Therefore, optimal EPS production by M. xanthus is important for normal physiological functions in liquid.  相似文献   

5.
Myxococcus xanthus is a gram-negative soil bacterium which undergoes fruiting body formation during starvation. The frz signal transduction system has been found to play an important role in this process. FrzCD, a methyl-accepting taxis protein homologue, shows modulated methylation during cellular aggregation, which is thought to be part of an adaptation response to an aggregation signal. In this study, we assayed FrzCD methylation in many known and newly isolated mutants defective in fruiting body formation to determine a possible relationship between the methylation response and fruiting morphology. The results of our analysis indicated that the developmental mutants could be divided into two groups based on their ability to show normal FrzCD methylation during development. Many mutants blocked early in development, i.e., nonaggregating or abnormally aggregating mutants, showed poor FrzCD methylation. The well-characterized asg, bsg, csg, and esg mutants were found to be of this type. The defects in FrzCD methylation of these signaling mutants could be partially rescued by extracellular complementation with wild-type cells or addition of chemicals which restore their fruiting body formation. Mutants blocked in late development, i.e., translucent mounds, showed normal FrzCD methylation. Surprisingly, some mutants blocked in early development also exhibited a normal level of FrzCD methylation. The characterized mutants in this group were found to be defective in social motility. This indicates that FrzCD methylation defines a discrete step in the development of M. xanthus and that social motility mutants are not blocked in these early developmental steps.  相似文献   

6.
Spatial organization of Myxococcus xanthus during fruiting body formation   总被引:1,自引:0,他引:1  
Microcinematography was used to examine fruiting body development of Myxococcus xanthus. Wild-type cells progress through three distinct phases: a quiescent phase with some motility but little aggregation (0 to 8 h), a period of vigorous motility leading to raised fruiting bodies (8 to 16 h), and a period of maturation during which sporulation is initiated (16 to 48 h). Fruiting bodies are extended vertically in a series of tiers, each involving the addition of a cell monolayer on top of the uppermost layer. A pilA (MXAN_5783) mutant produced less extracellular matrix material and thus allowed closer examination of tiered aggregate formation. A csgA (MXAN_1294) mutant exhibited no quiescent phase, aberrant aggregation in phase 2, and disintegration of the fruiting bodies in the third phase.  相似文献   

7.
Myxococcus xanthus is a gram-negative soil bacterium best known for its remarkable life history of social swarming, social predation, and multicellular fruiting body formation. Very little is known about genetic diversity within this species or how social strategies might vary among neighboring strains at small spatial scales. To investigate the small-scale population structure of M. xanthus, 78 clones were isolated from a patch of soil (16 by 16 cm) in Tübingen, Germany. Among these isolates, 21 genotypes could be distinguished from a concatemer of three gene fragments: csgA (developmental C signal), fibA (extracellular matrix-associated zinc metalloprotease), and pilA (the pilin subunit of type IV pili). Accumulation curves showed that most of the diversity present at this scale was sampled. The pilA gene contains both conserved and highly variable regions, and two frequency-distribution tests provide evidence for balancing selection on this gene. The functional domains in the csgA gene were found to be conserved. Three instances of lateral gene transfer could be inferred from a comparison of individual gene phylogenies, but no evidence was found for linkage equilibrium, supporting the view that M. xanthus evolution is largely clonal. This study shows that M. xanthus is surrounded by a variety of distinct conspecifics in its natural soil habitat at a spatial scale at which encounters among genotypes are likely.  相似文献   

8.
Myxococcus xanthus is a Gram‐negative bacterium capable of complex developmental processes involving vegetative swarming and fruiting body formation. Social (S‐) gliding motility, one of the two motility systems used by M. xanthus, requires at least two cell surface structures: type IV pili (TFP) and extracellular polysaccharides (EPS). Extended TFP that are composed of thousands of copies of PilA retract upon binding to EPS and thereby pull the cell forward. TFP also act as external sensor to regulate EPS production. In this study, we generated a random PilA mutant library and identified one derivative, SW1066, which completely failed to undergo developmental processes. Detailed characterization revealed that SW1066 produced very little EPS but wild‐type amounts of PilA. These mutated PilA subunits, however, are unable to assemble into functional TFP despite their ability to localize to the membrane. By preventing the mutated PilA of SW1066 to translocate from the cytoplasm to the membrane, fruiting body formation and EPS production were restored to the levels observed in mutant strains lacking PilA. This apparent connection between PilA membrane accumulation and reduction in surface EPS implies that specific cellular PilA localization are required to maintain the EPS level necessary to sustain normal S‐motility in M. xanthus.  相似文献   

9.
10.
Links between cell division and other cellular processes are poorly understood. It is difficult to simultaneously examine division and function in most cell types. Most of the research probing aspects of cell division has experimented with stationary or immobilized cells or distinctly asymmetrical cells. Here we took an alternative approach by examining cell division events within motile groups of cells growing on solid medium by time-lapse microscopy. A total of 558 cell divisions were identified among approximately 12,000 cells. We found an interconnection of division, motility, and polarity in the bacterium Myxococcus xanthus. For every division event, motile cells stop moving to divide. Progeny cells of binary fission subsequently move in opposing directions. This behavior involves M. xanthus Frz proteins that regulate M. xanthus motility reversals but is independent of type IV pilus “S motility.” The inheritance of opposing polarity is correlated with the distribution of the G protein RomR within these dividing cells. The constriction at the point of division limits the intracellular distribution of RomR. Thus, the asymmetric distribution of RomR at the parent cell poles becomes mirrored at new poles initiated at the site of division.  相似文献   

11.
Myxococcus xanthus cells self-organize into aligned groups, clusters, at various stages of their lifecycle. Formation of these clusters is crucial for the complex dynamic multi-cellular behavior of these bacteria. However, the mechanism underlying the cell alignment and clustering is not fully understood. Motivated by studies of clustering in self-propelled rods, we hypothesized that M. xanthus cells can align and form clusters through pure mechanical interactions among cells and between cells and substrate. We test this hypothesis using an agent-based simulation framework in which each agent is based on the biophysical model of an individual M. xanthus cell. We show that model agents, under realistic cell flexibility values, can align and form cell clusters but only when periodic reversals of cell directions are suppressed. However, by extending our model to introduce the observed ability of cells to deposit and follow slime trails, we show that effective trail-following leads to clusters in reversing cells. Furthermore, we conclude that mechanical cell alignment combined with slime-trail-following is sufficient to explain the distinct clustering behaviors observed for wild-type and non-reversing M. xanthus mutants in recent experiments. Our results are robust to variation in model parameters, match the experimentally observed trends and can be applied to understand surface motility patterns of other bacterial species.  相似文献   

12.
13.
Biofilm formation is a common mechanism for surviving environmental stress and can be triggered by both intraspecies and interspecies interactions. Prolonged predator-prey interactions between the soil bacterium Myxococcus xanthus and Bacillus subtilis were found to induce the formation of a new type of B. subtilis biofilm, termed megastructures. Megastructures are tree-like brachiations that are as large as 500 μm in diameter, are raised above the surface between 150 and 200 μm, and are filled with viable endospores embedded within a dense matrix. Megastructure formation did not depend on TasA, EpsE, SinI, RemA, or surfactin production and thus is genetically distinguishable from colony biofilm formation on MSgg medium. As B. subtilis endospores are not susceptible to predation by M. xanthus, megastructures appear to provide an alternative mechanism for survival. In addition, M. xanthus fruiting bodies were found immediately adjacent to the megastructures in nearly all instances, suggesting that M. xanthus is unable to acquire sufficient nutrients from cells housed within the megastructures. Lastly, a B. subtilis mutant lacking the ability to defend itself via bacillaene production formed megastructures more rapidly than the parent. Together, the results indicate that production of the megastructure facilitates B. subtilis escape into dormancy via sporulation.  相似文献   

14.
The formation of spore-filled fruiting bodies by myxobacteria is a fascinating case of multicellular self-organization by bacteria. The organization of Myxococcus xanthus into fruiting bodies has long been studied not only as an important example of collective motion of bacteria, but also as a simplified model for developmental morphogenesis. Sporulation within the nascent fruiting body requires signaling between moving cells in order that the rod-shaped self-propelled cells differentiate into spores at the appropriate time. Probing the three-dimensional structure of myxobacteria fruiting bodies has previously presented a challenge due to limitations of different imaging methods. A new technique using Infrared Optical Coherence Tomography (OCT) revealed previously unknown details of the internal structure of M. xanthus fruiting bodies consisting of interconnected pockets of relative high and low spore density regions. To make sense of the experimentally observed structure, modeling and computer simulations were used to test a hypothesized mechanism that could produce high-density pockets of spores. The mechanism consists of self-propelled cells aligning with each other and signaling by end-to-end contact to coordinate the process of differentiation resulting in a pattern of clusters observed in the experiment. The integration of novel OCT experimental techniques with computational simulations can provide new insight into the mechanisms that can give rise to the pattern formation seen in other biological systems such as dictyostelids, social amoeba known to form multicellular aggregates observed as slugs under starvation conditions.  相似文献   

15.
Myxococcus xanthus multicellular fruiting body development is initiated by nutrient limitation at high cell density. Five clustered point mutations (sasB5, -14, -15, -16, and -17) can bypass the starvation and high-cell-density requirements for expression of the 4521 developmental reporter gene. These mutants express 4521 at high levels during growth and development in an asgB background, which is defective in generation of the cell density signal, A signal. A 1.3-kb region of the sasB locus cloned from the wild-type chromosome restored the SasB+ phenotype to the five mutants. DNA sequence analysis of the 1.3-kb region predicted an open reading frame, designated SasN. The N terminus of SasN appears to contain a strongly hydrophobic region and a leucine zipper motif. SasN showed no significant sequence similarities to known proteins. A strain containing a newly constructed sasN-null mutation and Ω4521 Tn5lac in an otherwise wild-type background expressed 4521 at a high level during growth and development. A similar sasN-null mutant formed abnormal fruiting bodies and sporulated at about 10% the level of wild type. These data indicate that the wild-type sasN gene product is necessary for normal M. xanthus fruiting body development and functions as a critical regulator that prevents 4521 expression during growth.  相似文献   

16.
Chemosensory systems (CSS) are complex regulatory pathways capable of perceiving external signals and translating them into different cellular behaviors such as motility and development. In the δ-proteobacterium Myxococcus xanthus, chemosensing allows groups of cells to orient themselves and aggregate into specialized multicellular biofilms termed fruiting bodies. M. xanthus contains eight predicted CSS and 21 chemoreceptors. In this work, we systematically deleted genes encoding components of each CSS and chemoreceptors and determined their effects on M. xanthus social behaviors. Then, to understand how the 21 chemoreceptors are distributed among the eight CSS, we examined their phylogenetic distribution, genomic organization and subcellular localization. We found that, in vivo, receptors belonging to the same phylogenetic group colocalize and interact with CSS components of the respective phylogenetic group. Finally, we identified a large chemosensory module formed by three interconnected CSS and multiple chemoreceptors and showed that complex behaviors such as cell group motility and biofilm formation require regulatory apparatus composed of multiple interconnected Che-like systems.  相似文献   

17.
Myxobacteria are renowned for the ability to sporulate within fruiting bodies whose shapes are species-specific. The capacity to build those multicellular structures arises from the ability of M. xanthus to organize high cell-density swarms, in which the cells tend to be aligned with each other while constantly in motion. The intrinsic polarity of rod-shaped cells lays the foundation, and each cell uses two polar engines for gliding on surfaces. It sprouts retractile type IV pili from the leading cell pole and secretes capsular polysaccharide through nozzles from the trailing pole. Regularly periodic reversal of the gliding direction was found to be required for swarming. Those reversals are generated by a G-protein switch which is driven by a sharply tuned oscillator. Starvation induces fruiting body development, and systematic reductions in the reversal frequency are necessary for the cells to aggregate rather than continue to swarm. Developmental gene expression is regulated by a network that is connected to the suppression of reversals.  相似文献   

18.
Synergism between morphogenetic mutants of Myxococcus xanthus.   总被引:96,自引:0,他引:96  
Myxococcus xanthus, a social procaryotic microorganism, forms fruiting bodies and myxospores. We have isolated a collection of mutants of M. xanthus that are defective in fruiting morphogenesis and have studied synergistic interaction in pairwise mixtures of these mutants. Certain pairs of these fruiting-defective mutants can fruit when mixed together. Similarly, certain mutants that cannot sporulate under standard fruiting conditions can form myxospores in the presence of wildtype or other nonsporulating mutants. The pattern of synergism between pairs of conditional nonsporulating mutants defines at least three and probably four groups of mutants, such that members of a group cannot synergize with each other but can synergize with members of other groups.  相似文献   

19.
Nutrient or niche-based competition among bacteria is a widespread phenomenon in the natural environment. Such interspecies interactions are often mediated by secreted soluble factors and/or direct cell–cell contact. As ubiquitous soil bacteria, Myxococcus species are able to produce a variety of bioactive secondary metabolites to inhibit the growth of other competing bacterial species. Meanwhile, Myxococcus spp. also exhibit sophisticated predatory behavior, an extreme form of competition that is often stimulated by close contact with prey cells and largely depends on the availability of solid surfaces. Myxococcus spp. can also be isolated from aquatic environments. However, studies focusing on the interaction between Myxococcus and other bacteria in such environments are still limited. In this study, using the well-studied Myxococcus xanthus DK1622 and Escherichia coli as model interspecies interaction pair, we demonstrated that in an aqueous environment, M. xanthus was able to kill E. coli in a cell contact-dependent manner and that the observed contact-dependent killing required the formation of co-aggregates between M. xanthus and E. coli cells. Further analysis revealed that exopolysaccharide (EPS), type IV pilus, and lipopolysaccharide mutants of M. xanthus displayed various degrees of attenuation in E. coli killing, and it correlated well with the mutants' reduction in EPS production. In addition, M. xanthus showed differential binding ability to different bacteria, and bacterial strains unable to co-aggregate with M. xanthus can escape the killing, suggesting the specific nature of co-aggregation and the targeted killing of interacting bacteria. In conclusion, our results demonstrated EPS-mediated, contact-dependent killing of E. coli by M. xanthus, a strategy that might facilitate the survival of this ubiquitous bacterium in aquatic environments.  相似文献   

20.
Conditional expression of a gene is a powerful tool to study its function and is typically achieved by placing the gene under the control of an inducible promoter. There is, however, a dearth of such inducible systems in Myxococcus xanthus, a well-studied prokaryotic model for multicellular development, cell differentiation, motility, and light response and a promising source of secondary metabolites. The few available systems have limitations, and exogenously based ones are unavailable. Here, we describe two new, versatile inducible systems for conditional expression of genes in M. xanthus. One employs isopropyl-β-d-thiogalactopyranoside (IPTG) as an inducer and is inspired by those successfully applied in some other bacteria. The other requires vanillate as an inducer and is based on the system developed originally for Caulobacter crescentus and recently adapted for mammalian cells. Both systems are robust, with essentially no expression in the absence of an inducer. Depending on the inducer and the amounts added, expression levels can be modulated such that either system can conditionally express genes, including ones that are essential and are required at high levels such as ftsZ. The two systems operate during vegetative growth as well as during M. xanthus development. Moreover, they can be used to simultaneously induce expression of distinct genes within the same cell. The conditional expression systems we describe substantially expand the genetic tool kit available for studying M. xanthus gene function and cellular biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号