首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We previously cloned RRP14/YKL082c, whose product exhibits two-hybrid interaction with Ebp2p, a regulatory factor of assembly of 60S ribosomal subunits. Depletion of Rrp14p results in shortage of 60S ribosomal subunits and retardation of processing from 27S pre-rRNA to 25S rRNA. Furthermore, 35S pre-rRNA synthesis appears to decline in Rrp14p-depleted cells. Rrp14p interacts with regulatory factors of 60S subunit assembly and also with Utp11p and Faf1p, which are regulatory factors required for assembly of 40S ribosomal subunits. We propose that Rrp14p is involved in ribosome synthesis from the beginning of 35S pre-rRNA synthesis to assembly of the 60S ribosomal subunit. Disruption of RRP14 causes an extremely slow growth rate of the cell, a severe defect in ribosome synthesis, and a depolarized localization of cortical actin patches throughout the cell cycle. These results suggest that Rrp14p has dual functions in ribosome synthesis and polarized cell growth.  相似文献   

3.
We have recently shown that the mammalian nucleolar protein Bop1 is involved in synthesis of the 28S and 5.8S ribosomal RNAs (rRNAs) and large ribosome subunits in mouse cells. Here we have investigated the functions of the Saccharomyces cerevisiae homolog of Bop1, Erb1p, encoded by the previously uncharacterized open reading frame YMR049C. Gene disruption showed that ERB1 is essential for viability. Depletion of Erb1p resulted in a loss of 25S and 5.8S rRNAs synthesis, while causing only a moderate reduction and not a complete block in 18S rRNA formation. Processing analysis showed that Erb1p is required for synthesis of 7S pre-rRNA and mature 25S rRNA from 27SB pre-rRNA. In Erb1p-depleted cells these products of 27SB processing are largely absent and 27SB pre-rRNA is under-accumulated, apparently due to degradation. In addition, depletion of Erb1p caused delayed processing of the 35S pre-rRNA. These findings demonstrate that Erb1p, like its mammalian counterpart Bop1, is required for formation of rRNA components of the large ribosome particles. The similarities in processing defects caused by functional disruption of Erb1p and Bop1 suggest that late steps in maturation of the large ribosome subunit rRNAs employ mechanisms that are evolutionarily conserved throughout eukaryotes.  相似文献   

4.
Ribosomal (r)RNAs are extensively modified during ribosome synthesis and their modification is required for the fidelity and efficiency of translation. Besides numerous small nucleolar RNA-guided 2′-O methylations and pseudouridinylations, a number of individual RNA methyltransferases are involved in rRNA modification. WBSCR22/Merm1, which is affected in Williams–Beuren syndrome and has been implicated in tumorigenesis and metastasis formation, was recently shown to be involved in ribosome synthesis, but its molecular functions have remained elusive. Here we show that depletion of WBSCR22 leads to nuclear accumulation of 3′-extended 18SE pre-rRNA intermediates resulting in impaired 18S rRNA maturation. We map the 3′ ends of the 18SE pre-rRNA intermediates accumulating after depletion of WBSCR22 and in control cells using 3′-RACE and deep sequencing. Furthermore, we demonstrate that WBSCR22 is required for N7-methylation of G1639 in human 18S rRNA in vivo. Interestingly, the catalytic activity of WBSCR22 is not required for 18S pre-rRNA processing, suggesting that the key role of WBSCR22 in 40S subunit biogenesis is independent of its function as an RNA methyltransferase.  相似文献   

5.
NIP7 is one of the many trans-acting factors required for eukaryotic ribosome biogenesis, which interacts with nascent pre-ribosomal particles and dissociates as they complete maturation and are exported to the cytoplasm. By using conditional knockdown, we have shown previously that yeast Nip7p is required primarily for 60S subunit synthesis while human NIP7 is involved in the biogenesis of 40S subunit. This raised the possibility that human NIP7 interacts with a different set of proteins as compared to the yeast protein. By using the yeast two-hybrid system we identified FTSJ3, a putative ortholog of yeast Spb1p, as a human NIP7-interacting protein. A functional association between NIP7 and FTSJ3 is further supported by colocalization and coimmunoprecipitation analyses. Conditional knockdown revealed that depletion of FTSJ3 affects cell proliferation and causes pre-rRNA processing defects. The major pre-rRNA processing defect involves accumulation of the 34S pre-rRNA encompassing from site A' to site 2b. Accumulation of this pre-rRNA indicates that processing of sites A0, 1 and 2 are slower in cells depleted of FTSJ3 and implicates FTSJ3 in the pathway leading to 18S rRNA maturation as observed previously for NIP7. The results presented in this work indicate a close functional interaction between NIP7 and FTSJ3 during pre-rRNA processing and show that FTSJ3 participates in ribosome synthesis in human cells.  相似文献   

6.
Here we report the functional characterization of Pwp2, an evolutionary conserved component of the 90 S pre-ribosome. Conditional depletion of the Pwp2 protein in yeast specifically impairs pre-rRNA proccessing at sites A(0), A(1), and A(2), leading to a strong decrease in 18 S rRNA and 40 S ribosomal subunit levels. Pre-ribosomal particle sedimentation analysis indicated that these defects are caused by a block in the formation of 90 S pre-ribosomes. We demonstrate that in Pwp2-depleted cells the U3 small nucleolar ribonucleoprotein is not able to interact with the 35 S pre-rRNA and accumulates as a free complex. Similarly, other 90 S particle components such as Imp3 and Imp4 do not associate with the pre-rRNA precursor in the absence of Pwp2. In addition, we have found that after blocking U3 ribonucleoprotein assembly, Pwp2 predominantly accumulates as a complex in association with five proteins: Dip2, Utp6, Utp13, Utp18, and Utp21. Immunoprecipitation and gradient sedimentation analysis revealed that this Pwp2 small subcomplex is capable of interacting directly with the 35 S pre-rRNA 5' end. Taken together, these results indicate that Pwp2 forms part of a stable particle subunit independent of the U3 small nucleolar ribonucleoprotein that is essential for the initial assembly steps of the 90 S pre-ribosome.  相似文献   

7.
8.
9.
Bop1 is a conserved nucleolar protein involved in rRNA processing and ribosome assembly in eukaryotes. Expression of its dominant-negative mutant Bop1 Delta in mouse cells blocks rRNA maturation and synthesis of large ribosomal subunits and induces a reversible, p53-dependent cell cycle arrest. In this study, we have conducted a deletion analysis of Bop1 and identified a new mutant, Bop1N2, that also acts as a potent inhibitor of cell cycle progression. Bop1N2 and Bop1 Delta are C-terminal and N-terminal deletion mutants, respectively, and share only 72 amino acid residues. Both mutant proteins are localized to the nucleolus and strongly inhibit rRNA processing, suggesting that activation of a cell cycle checkpoint by Bop1 mutants is linked to their inhibitory effects on rRNA and ribosome synthesis. By using these dominant-negative mutants as well as antisense oligonucleotides to interfere with endogenous Bop1, we identified specific rRNA processing steps that require Bop1 function in mammalian cells. Our data demonstrate that Bop1 is required for proper processing at four distinct sites located within the internal transcribed spacers ITS1 and ITS2 and the 3' external spacer. We propose a model in which Bop1 serves as an essential factor in ribosome formation that coordinates processing of the spacer regions in pre-rRNA.  相似文献   

10.
The small subunit (SSU) processome is a ribosome biogenesis intermediate that assembles from its subcomplexes onto the pre-18S rRNA with yet unknown order and structure. Here, we investigate the architecture of the UtpB subcomplex of the SSU processome, focusing on the interaction between the half-a-tetratricopeptide repeat (HAT) domain of Utp6 and a specific peptide in Utp21. We present a comprehensive map of the interactions within the UtpB subcomplex and further show that the N-terminal domain of Utp6 interacts with Utp18 while the HAT domain interacts with Utp21. Using a panel of point and deletion mutants of Utp6, we show that an intact HAT domain is essential for efficient pre-rRNA processing and cell growth. Further investigation of the Utp6-Utp21 interaction using both genetic and biophysical methods shows that the HAT domain binds a specific peptide ligand in Utp21, the first example of a HAT domain peptide ligand, with a dissociation constant of 10 μM.  相似文献   

11.
12.
Human ribosome production is up-regulated during tumorogenesis and is defective in many genetic diseases (ribosomopathies). We have undertaken a detailed analysis of human precursor ribosomal RNA (pre-rRNA) processing because surprisingly little is known about this important pathway. Processing in internal transcribed spacer 1 (ITS1) is a key step that separates the rRNA components of the large and small ribosomal subunits. We report that this was initiated by endonuclease cleavage, which required large subunit biogenesis factors. This was followed by 3′ to 5′ exonucleolytic processing by RRP6 and the exosome, an enzyme complex not previously linked to ITS1 removal. In contrast, RNA interference–mediated knockdown of the endoribonuclease MRP did not result in a clear defect in ITS1 processing. Despite the apparently high evolutionary conservation of the pre-rRNA processing pathway and ribosome synthesis factors, each of these features of human ITS1 processing is distinct from those in budding yeast. These results also provide significant insight into the links between ribosomopathies and ribosome production in human cells.  相似文献   

13.
Yeast snR30 is an essential box H/ACA small nucleolar RNA (snoRNA) that promotes 18S rRNA processing through forming transient base-pairing interactions with the newly synthesized 35S pre-rRNA. By using a novel tandem RNA affinity selection approach, followed by coimmunoprecipitation and in vivo cross-linking experiments, we demonstrate that in addition to the four H/ACA core proteins, Cbf5p, Nhp2p, Nop10p and Gar1p, a fraction of snR30 specifically associates with the Utp23p and Kri1p nucleolar proteins. Depletion of Utp23p and Kri1p has no effect on the accumulation and recruitment of snR30 to the nascent pre-ribosomes. However, in the absence of Utp23p, the majority of snR30 accumulates in large pre-ribosomal particles. The retained snR30 is not base-paired with the 35S pre-rRNA, indicating that its aberrant tethering to nascent preribosomes is likely mediated by pre-ribosomal protein(s). Thus, Utp23p may promote conformational changes of the pre-ribosome, essential for snR30 release. Neither Utp23p nor Kri1p is required for recruitment of snR30 to the nascent pre-ribosome. On the contrary, depletion of snR30 prevents proper incorporation of both Utp23p and Kri1p into the 90S pre-ribosome containing the 35S pre-rRNA, indicating that snR30 plays a central role in the assembly of functionally active small subunit processome.  相似文献   

14.
15.
Ribosome production, one of the most energy-consuming biosynthetic activities in living cells, is adjusted to growth conditions and coordinated with the cell cycle. Connections between ribosome synthesis and cell cycle progression have been described, but the underlying mechanisms remain only partially understood. The human HCA66 protein was recently characterized as a component of the centrosome, the major microtubule-organizing center (MTOC) in mammalian cells, and was shown to be required for centriole duplication and assembly of the mitotic spindle. We show here that HCA66 is also required for nucleolar steps of the maturation of the 40S ribosomal subunit and therefore displays a dual function. Overexpression of a dominant negative version of HCA66, accumulating at the centrosome but absent from the nucleoli, alters centrosome function but has no effect on pre-rRNA processing, suggesting that HCA66 acts independently in each process. In yeast and HeLa cells, depletion of MTOC components does not impair ribosome synthesis. Hence our results suggest that both in yeast and human cells, assembly of a functional MTOC and ribosome synthesis are not closely connected processes.  相似文献   

16.
In eukaryotic ribosome biogenesis, U3 snoRNA base pairs with the pre-rRNA to promote its processing. However, U3 must be removed to allow folding of the central pseudoknot, a key feature of the small subunit. Previously, we showed that the DEAH/RHA RNA helicase Dhr1 dislodges U3 from the pre-rRNA. DHR1 can be linked to UTP14, encoding an essential protein of the preribosome, through genetic interactions with the rRNA methyltransferase Bud23. Here, we report that Utp14 regulates Dhr1. Mutations within a discrete region of Utp14 reduced interaction with Dhr1 that correlated with reduced function of Utp14. These mutants accumulated Dhr1 and U3 in a pre-40S particle, mimicking a helicase-inactive Dhr1 mutant. This similarity in the phenotypes led us to propose that Utp14 activates Dhr1. Indeed, Utp14 formed a complex with Dhr1 and stimulated its unwinding activity in vitro. Moreover, the utp14 mutants that mimicked a catalytically inactive dhr1 mutant in vivo showed reduced stimulation of unwinding activity in vitro. Dhr1 binding to the preribosome was substantially reduced only when both Utp14 and Bud23 were depleted. Thus, Utp14 is bifunctional; together with Bud23, it is needed for stable interaction of Dhr1 with the preribosome, and Utp14 activates Dhr1 to dislodge U3.  相似文献   

17.
J M Hughes  M Ares  Jr 《The EMBO journal》1991,10(13):4231-4239
Multiple processing events are required to convert a single eukaryotic pre-ribosomal RNA (pre-rRNA) into mature 18S (small subunit), 5.8S and 25-28S (large subunit) rRNAs. We have asked whether U3 small nucleolar RNA is required for pre-rRNA processing in vivo by depleting Saccharomyces cerevisiae of U3 by conditional repression of U3 synthesis. The resulting pattern of accumulation and depletion of specific pre-rRNAs indicates that U3 is required for multiple events leading to the maturation of 18S rRNA. These include an initial cleavage within the 5' external transcribed spacer, resembling the U3 dependent initial processing event of mammalian pre-rRNA. Formation of large subunit rRNAs is unaffected by U3 depletion. The similarity between the effects of U3 depletion and depletion of U14 small nucleolar RNA and the nucleolar protein fibrillarin (NOP1) suggests that these could be components of a single highly conserved processing complex.  相似文献   

18.
Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.  相似文献   

19.
Rea1, the largest predicted protein in the yeast genome, is a member of the AAA(+) family of ATPases and is associated with pre-60 S ribosomes. Here we report that Rea1 is required for maturation and nuclear export of the pre-60 S subunit. Rea1 exhibits a predominantly nucleoplasmic localization and is present in a late pre-60 S particle together with members of the Rix1 complex. To study the role of Rea1 in ribosome biogenesis, we generated a repressible GAL::REA1 strain and temperature-sensitive rea1 alleles. In vivo depletion of Rea1 results in the significant reduction of mature 60 S subunits concomitant with defects in pre-rRNA processing and late pre-60 S ribosome stability following ITS2 cleavage and prior to the generation of mature 5.8 S rRNA. Strains depleted of the components of the Rix1 complex (Rix1, Ipi1, and Ipi3) showed similar defects. Using an in vivo 60 S subunit export assay, a strong accumulation of the large subunit reporter Rpl25-GFP (green fluorescent protein) in the nucleus and at the nuclear periphery was seen in rea1 mutants at restrictive conditions.  相似文献   

20.
The small subunit (SSU) processome is an evolutionarily conserved ribonucleoprotein (RNP) complex that consists of U3 snoRNA and at least 40 protein components. The SSU processome is required for the generation of 18S rRNA in the budding yeast Saccharomyces cerevisiae. In this study we demonstrate that two essential components of the SSU processome, Utp8p and Utp9p, must interact directly for the SSU processome to function properly. Disruption of the Utp8p-Utp9p interaction by mutation of the respective interacting domain led to a compromised ability of yeast cells to process 35S pre-rRNA into 18S pre-rRNA. Loss of the Utp8p-Utp9p interaction also led to a decrease in the amount of Utp8p that interacted with U3 small nucleolar RNAs (snoRNAs) but did not affect the amount of Utp9p bound to U3 snoRNA, suggesting that Utp8p associates with the SSU processome by virtue of its interaction with Utp9p. Together, our data support a model where Utp8p and Utp9p must interact directly and functionally in the U3-containing SSU processome for optimal rRNA biosynthesis to occur in budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号