共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics trajectories 2 μs in length have been generated for the pH-activated, tetrameric M2 proton channel of the influenza A virus in all protonation states of the pH sensor located at the His37 tetrad. All simulated structures are in very good agreement with high-resolution structures. Changes in the channel caused by progressive protonation of His37 provide insight into the mechanism of proton transport. The channel is closed at both His37 and Trp41 sites in the singly and doubly protonated states, but it opens at Trp41 upon further protonation. Anions access the charged His37 and by doing so stabilize the protonated states of the channel. The narrow opening at the His37 site, further blocked by anions, is inconsistent with the water-wire mechanism of proton transport. Instead, conformational interconversions of His37 correlated with hydrogen bonding to water molecules indicate that these residues shuttle protons in high-protonation states. Hydrogen bonds between charged and uncharged histidines are rare. The valve at Val27 remains on average quite narrow in all protonation states but fluctuates sufficiently to support water and proton transport. A proton transport mechanism in which the channel, depending on pH, opens at either the histidine or valine gate is only partially supported by the simulations. 相似文献
2.
Molecular dynamics trajectories 2 μs in length have been generated for the pH-activated, tetrameric M2 proton channel of the influenza A virus in all protonation states of the pH sensor located at the His37 tetrad. All simulated structures are in very good agreement with high-resolution structures. Changes in the channel caused by progressive protonation of His37 provide insight into the mechanism of proton transport. The channel is closed at both His37 and Trp41 sites in the singly and doubly protonated states, but it opens at Trp41 upon further protonation. Anions access the charged His37 and by doing so stabilize the protonated states of the channel. The narrow opening at the His37 site, further blocked by anions, is inconsistent with the water-wire mechanism of proton transport. Instead, conformational interconversions of His37 correlated with hydrogen bonding to water molecules indicate that these residues shuttle protons in high-protonation states. Hydrogen bonds between charged and uncharged histidines are rare. The valve at Val27 remains on average quite narrow in all protonation states but fluctuates sufficiently to support water and proton transport. A proton transport mechanism in which the channel, depending on pH, opens at either the histidine or valine gate is only partially supported by the simulations. 相似文献
3.
The structure and functions of the M2 protein from Influenza A are sensitive to pH, cholesterol, and the antiinfluenza drug Amantadine. This is a tetrameric membrane protein of 97 amino-acid residues that has multiple functions, among them as a proton-selective channel and facilitator of viral budding, replacing the need for the ESCRT proteins that other viruses utilize. Here, various amino-acid-specific-labeled samples of the full-length protein were prepared and mixed, so that only interresidue 13C-13C cross peaks between two differently labeled proteins representing interhelical interactions are observed. This channel is activated at slightly acidic pH values in the endosome when the His37 residues in the middle of the transmembrane domain take on a +2 or +3 charged state. Changes observed here in interhelical distances in the N-terminus can be accounted for by modest structural changes, and no significant changes in structure were detected in the C-terminal portion of the channel upon activation of the channel. Amantadine, which blocks proton conductance by binding in the aqueous pore near the N-terminus, however, significantly modifies the tetrameric structure on the opposite side of the membrane. The interactions between the juxtamembrane amphipathic helix of one monomer and its neighboring monomer observed in the absence of drug are disrupted in its presence. However, the addition of cholesterol prevents this structural disruption. In fact, strong interactions are observed between cholesterol and residues in the amphipathic helix, accounting for cholesterol binding adjacent to a native palmitoylation site and near to an interhelix crevice that is typical of cholesterol binding sites. The resultant stabilization of the amphipathic helix deep in the bilayer interface facilitates the bilayer curvature that is essential for viral budding. 相似文献
4.
Eleonora V. Shtykova Lyudmila A. Baratova Natalia V. Fedorova Victor A. Radyukhin Alexander L. Ksenofontov Vladimir V. Volkov Alexander V. Shishkov Alexey A. Dolgov Liudmila A. Shilova Oleg V. Batishchev Cy M. Jeffries Dmitri I. Svergun 《PloS one》2013,8(12)
Influenza A virus matrix protein M1 is one of the most important and abundant proteins in the virus particles broadly involved in essential processes of the viral life cycle. The absence of high-resolution data on the full-length M1 makes the structural investigation of the intact protein particularly important. We employed synchrotron small-angle X-ray scattering (SAXS), analytical ultracentrifugation and atomic force microscopy (AFM) to study the structure of M1 at acidic pH. The low-resolution structural models built from the SAXS data reveal a structurally anisotropic M1 molecule consisting of a compact NM-fragment and an extended and partially flexible C-terminal domain. The M1 monomers co-exist in solution with a small fraction of large clusters that have a layered architecture similar to that observed in the authentic influenza virions. AFM analysis on a lipid-like negatively charged surface reveals that M1 forms ordered stripes correlating well with the clusters observed by SAXS. The free NM-domain is monomeric in acidic solution with the overall structure similar to that observed in previously determined crystal structures. The NM-domain does not spontaneously self assemble supporting the key role of the C-terminus of M1 in the formation of supramolecular structures. Our results suggest that the flexibility of the C-terminus is an essential feature, which may be responsible for the multi-functionality of the entire protein. In particular, this flexibility could allow M1 to structurally organise the viral membrane to maintain the integrity and the shape of the intact influenza virus. 相似文献
5.
Abstract: There is mounting evidence that at least some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the β-amyloid precursor protein (βAPP). Most research has focused on the amyloid β protein (Aβ), which has been shown to possess ion channel activity. However, the possible role of other cleaved products of the βAPP is less clear. We have investigated the ability of various products of βAPP to induce membrane ion currents by applying them to Xenopus oocytes, a model system used extensively for investigating electrophysiological aspects of cellular, including neuronal, signalling. We focussed on the 105-amino-acid C-terminal fragment (CT105 ) (containing the full sequence Aβ), which has previously been found to be toxic to cells, although little is known about its mode of action. We have found that CT105 is exceedingly potent, with a threshold concentration of 100–200 n M , in inducing nonselective ion currents when applied from either outside or inside the oocyte and is more effective than either βAPP or the Aβ fragments, β25–35 or β1–40 . The ion channel activity of CT105 was concentration dependent and blocked by a monoclonal antibody to Aβ. These results suggest the possible involvement of CT105 in inducing the neural toxicity characteristic of AD. 相似文献
6.
Structures of truncated versions of the influenza A virus M2 proton channel have been determined recently by x-ray crystallography in the open conformation of the channel, and by NMR in the closed state. The structures differ in the position of the bound inhibitors. The x-ray structure shows a single amantadine molecule in the middle of the channel, whereas in the NMR structure four drug molecules bind at the channel's outer surface. To study this controversy we applied computational solvent mapping, a technique developed for the identification of the most druggable binding hot spots of proteins. The method moves molecular probes—small organic molecules containing various functional groups—around the protein surface, finds favorable positions using empirical free energy functions, clusters the conformations, and ranks the clusters on the basis of the average free energy. The results of the mapping show that in both structures the primary hot spot is an internal cavity overlapping the amantadine binding site seen in the x-ray structure. However, both structures also have weaker hot spots at the exterior locations that bind rimantadine in the NMR structure, although these sites are partially due to the favorable interactions with the interfacial region of the lipid bilayer. As confirmed by docking calculations, the open channel binds amantadine at the more favorable internal site, in good agreement with the x-ray structure. In contrast, the NMR structure is based on a peptide/micelle construct that is able to accommodate the small molecular probes used for the mapping, but has a too narrow pore for the rimantadine to access the internal hot spot, and hence the drug can bind only at the exterior sites. 相似文献
7.
8.
Zhou HX 《The Journal of membrane biology》2011,244(2):93-96
The M2 proton channel is essential for the replication of the flu virus and is a known drug target. The functional mechanism
of channel activation and conductance is key to both the basic biology of viral replication and the design of drugs that can
withstand mutations. A quantitative model was previously developed for calculating the rate of proton transport through the
M2 channel. The permeant proton was assumed to diffuse to the pore, obligatorily bind to the His37 tetrad, and then dissociate
and be released to either side of the tetrad. Here the model is used to calculate the effect of a change in solvent from H2O to D2O on the rate of proton transport. The solvent substitution affects two parameters in the model: the proton diffusion constant
and the pK
a for proton binding to the His37 tetrad. When the known effects on these two parameters are included, the deuterium isotope
effect calculated from the model is in quantitatively agreement with experimental results. This strict test of the theoretical
model provides strong support for the hypothesis that the permeant proton obligatorily binds to and then unbinds from the
His37 tetrad. This putatively essential role of the His37 tetrad in the functional mechanism of the M2 channel makes it a
promising target for designing mutation-tolerant drugs. 相似文献
9.
Chunlong Ma Giacomo Fiorin Vincenzo Carnevale Jun Wang Robert A. Lamb Michael L. Klein Yibing Wu Lawrence H. Pinto William F. DeGrado 《Structure (London, England : 1993)》2013,21(11):2033-2041
- Download : Download high-res image (288KB)
- Download : Download full-size image
10.
Aruna D. Balgi Jun Wang Daphne Y. H. Cheng Chunlong Ma Tom A. Pfeifer Yoko Shimizu Hilary J. Anderson Lawrence H. Pinto Robert A. Lamb William F. DeGrado Michel Roberge 《PloS one》2013,8(2)
The M2 proton channel of the influenza A virus is the target of the anti-influenza drugs amantadine and rimantadine. The effectiveness of these drugs has been dramatically limited by the rapid spread of drug resistant mutations, mainly at sites S31N, V27A and L26F in the pore of the channel. Despite progress in designing inhibitors of V27A and L26F M2, there are currently no drugs targeting these mutated channels in clinical trials. Progress in developing new drugs has been hampered by the lack of a robust assay with sufficient throughput for discovery of new active chemotypes among chemical libraries and sufficient sensitivity to provide the SAR data essential for their improvement and development as drugs. In this study we adapted a yeast growth restoration assay, in which expression of the M2 channel inhibits yeast growth and exposure to an M2 channel inhibitor restores growth, into a robust and sensitive high-throughput screen for M2 channel inhibitors. A screen of over 250,000 pure chemicals and semi-purified fractions from natural extracts identified 21 active compounds comprising amantadine, rimantadine, 13 related adamantanes and 6 non-adamantanes. Of the non-adamantanes, hexamethylene amiloride and a triazine derivative represented new M2 inhibitory chemotypes that also showed antiviral activity in a plaque reduction assay. Of particular interest is the fact that the triazine derivative was not sufficiently potent for detection as an inhibitor in the traditional two electrode voltage clamp assay for M2 channel activity, but its discovery in the yeast assay led to testing of analogues of which one was as potent as amantadine. 相似文献
11.
12.
Eyers PA Liu J Hayashi NR Lewellyn AL Gautier J Maller JL 《The Journal of biological chemistry》2005,280(26):24339-24346
Vertebrate oocytes are arrested in G(2) phase of the cell cycle at the prophase border of meiosis I. Progesterone treatment of Xenopus oocytes releases the G(2) block and promotes entry into the M phases of meiosis I and II. Substantial evidence indicates that the release of the G(2) arrest requires a decrease in cAMP and reduced activity of the cAMP-dependent protein kinase (PKAc). It has been reported and we confirm here that microinjection of either wild type or kinase-dead K72R PKAc inhibits progesterone-dependent release of the G(2) arrest with equal potency and that inhibition can be reversed by a second injection of the heat-stable inhibitor of PKAc, PKI. However, a mutant enzyme predicted to be completely kinase-dead from the crystal structure of PKAc, K72H PKAc, was much less inhibitory when carrying additional mutations that block interaction with either type I or type II regulatory subunit. Moreover, inhibition by K72H PKAc was reversed by PKI at a 30-fold lower concentration and with more rapid kinetics compared with wild type PKAc. K72R PKAc was found to have low but detectable activity after incubation in an oocyte extract. These results indicate that inhibition of the progesterone-dependent G(2)/M transition in oocytes after microinjection of dead PKAc reflects either low residual activity or binding to regulatory subunits with a resulting net increase in the level of endogenous wild type PKAc. Consistent with this hypothesis, the induction of mitosis in Xenopus egg extracts by the addition of cyclin B was blocked by wild type PKAc but not by K72H PKAc. The identification of substrates for PKAc that maintain cell cycle arrest in G(2) remains an important goal for future work. 相似文献
13.
Mouse GABA transporters belong to the family of Na(+)- and Cl(-)-dependent neurotransmitter transporters. The four GABA transporters exhibit unique presteady-state currents when expressed in Xenopus oocytes. The properties of the presteady-state currents correspond to their different affinities to Na(+). In the presence of 20 microM GABA and at pH 7.5, the half-maximal uptake activity was 47, 120, 25 and 35 mM Na(+) for GAT1, GAT2, GAT3 and GAT4, respectively. The appearance of presteady-state currents at positive or negative imposed potentials was in correlation with the affinity to Na(+). Changing the external pH differentially affected the GABA uptake and the presteady-state activities of the various GABA transporters. It is suggested that protons compete with Na(+) on its binding site; however, the proton binding is not productive and is unable to drive GABA uptake. 相似文献
14.
Effect of Culture Medium Composition and pH on the Production of M Protein and Proteinase by Group A Streptococci 总被引:7,自引:3,他引:7
下载免费PDF全文

Jay O. Cohen 《Journal of bacteriology》1969,99(3):737-744
The effects of pH, yeast extract, and neopeptone on the production of extracellular proteinase and M protein by group A streptococci were studied with a type 1 strain capable of producing both M protein and proteinase. The strain DS 2036-66 grew moderately well in a semisynthetic broth. M protein was produced without adding peptides to the medium. When added to a medium with 1% glucose, yeast extract (0.1%) was found to stimulate both growth and proteinase formation. Limiting the glucose to 0.25% prevented a drop in pH below 6.7 and prevented proteinase formation. Although less growth occurred with limited glucose, M protein of high specific activity was produced with an actual increase in acid-extractable M protein during the stationary phase of growth. When the medium was buffered at pH 7.85 with tris(hydroxymethyl)aminomethane buffer, 0.5% neopeptone prevented proteinase formation. This was true even in the presence of 1% glucose and 0.1% yeast extract, which resulted in a fall in pH to about 4.8 by 48 hr. Growth was greater than in Todd Hewitt broth, but the specific activity of M protein was considerably less than that found in the medium with glucose limited to 0.25%. Neopeptone was found to have little direct action on crude streptococcal proteinase. Instead, the evidence suggested that neopeptone somehow prevents proteinase elaboration. Yeast extract, on the other hand, appears to stimulate proteinase elaboration. To prevent proteinase formation, neopeptone must be added early, during the logarithmic phase of growth or at the start. In contrast, when yeast extract was added as late as 24 hr, it resulted in the elaboration of extracellular proteinase and in the decline of M protein. When 38 M nontypable strains from the diagnostic laboratory were tested for proteinase activity under conditions similar to those used in the diagnostic laboratory, only six produced much proteinase. 相似文献
15.
Hiizu Aoki Koichiro Maeno Tatsuya Tsurumi Shigeki Takeura Motohiro Shibata Michinari Hamaguchi Yoshiyuki Nagai Yasuo Sugiura 《Microbiology and immunology》1981,25(12):1279-1289
When influenza A/RI/5+ virus-infected cells were incubated in medium to which 2 μg of canavanine (arginine analog) per ml had been added 4 hr after infection, all viral polypeptides were synthesized but the budding-like process with the appearance of extracellular virus was completely inhibited. The plasma membrane isolated from these cells contained exclusively hemagglutinin (HA), and membrane (M) protein and nucleoprotein (NP) appeared to be associated with the nucleus, in contrast to untreated cells whose plasma membrane contained abundant HA, M protein, and NP. Disruption of canavanine-treated cells by freeze-thawing generated a number of hemagglutinating membranous vesicles or fragments containing exclusively HA. By isotope labeling it was found that the M protein synthesized in the presence of canavanine, together with HA and NP, is a canavanine-substituted polypeptide. It is suggested that canavanine inhibits the formation of the mature envelope of influenza RI/5+, because of the inability of M protein to associate with the plasma membrane. 相似文献
16.
Treatment with ginsenosides, major active ingredients of Panax ginseng, produces a variety of pharmacological or physiological responses with effects on the central and peripheral nervous systems. Recent reports showed that ginsenoside Rg2 inhibits nicotinic acetylcholine receptor-mediated Na+ influx and channel activity. In the present study, we investigated the effect of ginsenoside Rg2 on human 5-hydroxytryptamine3A (5-HT3A) receptor channel activity, which is also one of the ligand-gated ion channel families. The 5-HT3A receptor was expressed in Xenopus oocytes, and the current was measured using the two-electrode voltage clamp technique. The ginsenoside Rg2 itself had no effect on the oocytes that were injected with H2O as well as on the oocytes that were injected with the 5-HT3A receptor cRNA. In the oocytes that were injected with the 5-HT3A receptor cRNA, the pretreatment of ginsenoside Rg2 inhibited the 5-HT-induced inward peak current (I5-HT) The inhibitory effect of ginsenoside Rg2 on I5-HT was dose dependent and reversible. The half-inhibitory concentrations (IC50) of ginsenoside Rg2 was 22.3 +/- 4.6 microM. The inhibition of I5-HT by ginsenoside Rg2 was non-competitive and voltage-independent. These results indicate that ginsenoside Rg2 might regulate the 5-HT3A receptors that are expressed in Xenopus oocytes. Further, this regulation on the ligand-gated ion channel activity by ginsenosides might be one of the pharmacological actions of Panax ginseng. 相似文献
17.
A region responsible for protease binding by influenza virus A matrix protein M1 was identified. Trypsin binding was observed with the N-proximal 9-kDa fragment obtained by cleaving M1 with formic acid. The binding was inhibited by monoclonal antibodies (mAb) to region 46–70 of M1 and by an antiserum to region 21–45, whereas mAb to the middle and C-terminal regions had no effect. Thus, the protease-binding domain was mapped to the N-terminal part of M1. 相似文献
18.
Hansen Ulf-Peter; Moldaenke Christian; Tabrizi Hamed; Ramm Daniela 《Plant & cell physiology》1993,34(5):681-695
The light-induced changes of plasmalemma potential and of chlorophyllfluorescence were compared with changes induced by the modulationof O2- or CO2-concentration. The fast depolarisation of plasmalemmapotential upon illumination as labeled by the time-constant 相似文献
19.
《Cell host & microbe》2014,15(2):239-247
- Download : Download high-res image (239KB)
- Download : Download full-size image
20.
Esther H.-J. Kim Jane R. Petrie Lidia Motoi Marco P. Morgenstern Kevin H. Sutton Suman Mishra Lyall D. Simmons 《Food biophysics》2008,3(2):229-234
Pasta is a popular carbohydrate-based food with a low glycemic response. A continuous protein matrix which entraps starch
granules and/or limits/retards starch hydrolysis by α-amylase is thought to be an important factor in explaining the slow
digestion of starch in pasta. The characteristics of the protein matrix may also play an important role in determining the
rate of starch digestion in pasta and therefore its glycemic response. In this study, the structural and physicochemical characteristics
of the protein matrix of pasta were modified by varying the number of passes through sheeting rollers to investigate their
effect on in vitro starch digestibility. The results show that the proteins dissociated from the starch granules with increasing
sheeting passes thereby allowing an increased degree of digestion of starch. 相似文献