首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Genomics》2020,112(5):3268-3273
A new Alcanivorax sp. VBW004 was isolated from a shallow hydrothermal vent in Azores Island, Portugal. In this study, we determined VBW004 was resistant to copper. This strain showed maximum tolerance of copper concentrations up to 600 μg/mL. Based on 16S rRNA gene sequencing and phylogeny revealed that this strain was more closely related to Alcanivorax borkumensis SK2. We sequenced the genome of this strain that consist of 3.8 Mb size with a G + C content of 58.4 %. In addition, digital DNA-DNA hybridizations (dDDH) and the average nucleotide identities (ANI) analysis between Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9 revealed that Alcanivorax sp. VBW004 belongs to new species. Functional annotation revealed that the genome acquired multiple copper resistance encoding genes that could assist VBW004 to respond to high Cu toxicity. Our results from biosorption analysis presumed that the VBW004 is an ecologically important bacterium that could be useful for copper bioremediation.  相似文献   

4.
Phytophthora capsici is an oomycete known as the causal agent of wilting disease in Capsicum spp., which causes rotting of roots, crowns, stems, leaves and fruits. To date, little is known about the production of phytotoxic metabolites by P. capsici or their role in the infection process. As part of a project directed towards the isolation and identification of phytotoxins produced by a strain of P. capsici pathogenic to habanero pepper (Capsicum chinense), we have evaluated the effect of factors such as aeration, light and culture medium on the production of mycelium and phytotoxic metabolites by P. capsici. The results showed that culturing P. capsici in potato dextrose broth (PDB) containing habanero pepper leaf infusion, in the dark and under still conditions, results in a high production of mycelium and a high phytotoxicity of the culture filtrate, in the shortest period of time.  相似文献   

5.
6.
Chicken colibacillosis is caused by some pathogenic Escherichia coli strains. Thirty-five pathogenic antibiotic-resistant E. coli strains were used in the host range detection of bacteriophage Bp7. The phage showed a wide range of E. coli hosts (46%). The complete genome of bacteriophage Bp7 was sequenced, assembled, and analyzed. The results revealed a linear double-stranded DNA sequence of 168,066 bp harboring 791 open reading frames. The major findings from its annotation are described.  相似文献   

7.
8.
We have explored the fungal diversity in asymptomatic twigs of apple, peach, pear and blueberry trees, with the objective of discerning between true endophytes and latent pathogens. Several fungal genera containing known bark pathogens were found. Seven Diaporthe species—D. oxe, D. infecunda, D. serafiniae, D. phaseolorum, D. terebinthifolii, Dfoeniculina and D. brasiliensis—were identified, along with Botryosphaeria dothidea, Neofusicoccum parvum, Neofusicoccum australe, Cytospora sp., Cytospora acaciae and Pestalotiopsis spp. A pathogenicity trial was undertaken to determine the role of these species on apple, pear, blueberry and peach shoots. Diaporthe brasiliensis, D. foeniculina, Diaporthe inconspicua, D. terebinthifolii, Diaporthe sp.1, Cytospora‐like isolates and Pestalotiopsis spp. isolates produced no lesions on inoculated shoots, suggesting that they could be considered true endophytes on their respective hosts. Meanwhile, some of the isolates of Diaporthe—D. oxe, Diaporthe sp.2, D. infecunda and D. serafiniae, B. dothidea, N. parvum and N. australe could be regarded as latent pathogens in their respective hosts as they produced sunken cankers and necrosis on inoculated shoots. These results demonstrate that apple, pear, blueberry and peach healthy shoots can host many known endophytic fungi along with potential wood disease‐causing fungi that should be regarded as latent pathogens.  相似文献   

9.
《Genomics》2023,115(3):110617
Poncirus polyandra, a plant species with extremely small populations in China, has become extinct in the wild. This study aimed to identify functional genes that improve tolerance to abiotic and biotic stresses. Here, we present a high-quality chromosome-scale reference genome of P. polyandra. The reference genome is 315.78 Mb in size, with an N50 scaffold size of 32.07 Mb, and contains nine chromosomes with 20,815 protein-coding genes, covering 97.82% of the estimated gene space. We identified 17 rapidly evolving nucleotide-binding-site (NBS) genes, three C-repeat-binding factors (CBF) genes, 19 citrus greening disease (Huanglongbing, HLB) tolerance genes, 11 citrus tristeza virus (CTV) genes, and one citrus nematode resistance gene. A divergence time of 1.96 million years ago was estimated between P. polyandra and P. trifoliata. This is the first genome-scale assembly and annotation of P. polyandra, which will be useful for genetic, genomic, and molecular research and provide guidance for the development of conservation strategies.  相似文献   

10.
11.
The aphid Schlechtendalia chinensis is an economically important insect that can induce horned galls, which are valuable for the medicinal and chemical industries. Up to now, more than twenty aphid genomes have been reported. Most of the sequenced genomes are derived from free‐living aphids. Here, we generated a high‐quality genome assembly from a galling aphid. The final genome assembly is 271.52 Mb, representing one of the smallest sequenced genomes of aphids. The genome assembly is based on contig and scaffold N50 values of the genome sequence are 3.77 Mb and 20.41 Mb, respectively. Nine‐seven percent of the assembled sequences was anchored onto 13 chromosomes. Based on BUSCO analysis, the assembly involved 96.9% of conserved arthropod and 98.5% of the conserved Hemiptera single‐copy orthologous genes. A total of 14,089 protein‐coding genes were predicted. Phylogenetic analysis revealed that S. chinensis diverged from the common ancestor of Eriosoma lanigerum approximately 57 million years ago (MYA). In addition, 35 genes encoding salivary gland proteins showed differentially when S. chinensis forms a gall, suggesting they have potential roles in gall formation and plant defense suppression. Taken together, this high‐quality S. chinensis genome assembly and annotation provide a solid genetic foundation for future research to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.  相似文献   

12.
Drosophila simulans is a close relative of the genetic model D. melanogaster. Its worldwide distribution in combination with the absence of segregating chromosomal inversions makes this species an increasingly attractive model to study the molecular signatures of adaptation in natural and experimental populations. In an effort to improve the genomic resources for D. simulans, we assembled and annotated the genome of a strain originating from Madagascar (M252), the ancestral range of D. simulans. The comparison of the M252 genome to other available D. simulans assemblies confirmed its high quality, but also highlighted genomic regions that are difficult to assemble with NGS data. The annotation of M252 provides a clear improvement with alternative splicing for 52% of the multiple‐exon genes, UTRs for 70% of the genes, 225 novel genes and 781 pseudogenes being reported. We anticipate that the M252 genome will be a valuable resource for many research questions.  相似文献   

13.
14.
15.
Two Diaporthe species isolated from fruit of Citrus sinensis in China were characterized based on morphology and multilocus phylogeny of ITS, tef1, and tub2 gene sequences. The phylogeny indicated that the two species match Diaporthe taoicola and D. siamensis. A critical examination of phenotypic characteristics confirmed the phylogenetic results. Diaporthe taoicola was morphologically characterized by producing Alpha conidia with tapering toward both ends. Meanwhile, D. siamensis produced cylindrical or ellipsoidal Alpha conidia with two oil drops. Pathogenicity tests revealed that both species were pathogenic to fruit of C. sinensis. To our knowledge, the two species were firstly reported on Citrus sinensis in China.  相似文献   

16.
Delimitation of species boundaries within the fungal genus Diaporthe has been challenging, but the analyses of combined multilocus DNA sequences has become an important tool to infer phylogenetic relationships and to circumscribe species. However, analyses of congruence between individual gene genealogies and the application of the genealogical concordance principle have been somehow overlooked. We noted that a group of species including D. amygdali, D. garethjonesii, D. sterilis, D. kadsurae, D. ternstroemia, D. ovoicicola, D. fusicola, D. chongqingensis and D. mediterranea, commonly known as D. amygdali complex, occupy a monophyletic clade in Diaporthe phylogenies but the limits of all species within the complex are not entirely clear. To assess the boundaries of species within this complex we employed the Genealogical Concordance Phylogenetic Species Recognition principle (GCPSR) and coalescence-based models: General Mixed Yule-Coalescent (GMYC) and Poisson Tree Processes (PTP). The incongruence detected between individual gene phylogenies, as well as the results of coalescent methods do not support the recognition of lineages within the complex as distinct species. Moreover, results support the absence of reproductive isolation and barriers to gene flow in this complex, thus providing further evidence that the D. amygdali species complex constitutes a single species. This study highlights the relevance of the application of the GCPSR principle, showing that concatenation analysis of multilocus DNA sequences, although being a powerful tool, might lead to an erroneous definition of species limits. Additionally, it further shows that coalescent methods are useful tools to assist in a more robust delimitation of species boundaries in the genus Diaporthe.  相似文献   

17.
Microbial modification of polyunsaturated fatty acids can often lead to special changes in their structure and in biological potential. Therefore, the aim of this study was to develop potential antifungal agents through the microbial conversion of docosahexaenoic acid (DHA). Bioconverted oil extract of docosahexaenoic acid (bDHA), obtained from the microbial conversion of docosahexaenoic acid (DHA) by Pseudomonas aeruginosa PR3, was assessed for its in vitro and in vivo antifungal potential. Mycelial growth inhibition of test plant pathogens, such as Botrytis cinerea, Colletotrichum capsici, Fusarium oxysporum, Fusarium solani, Phytophthora capsici, Rhizoctonia solani and Sclerotinia sclerotiorum, was measured in vitro. bDHA (5 μl disc−1) inhibited 55.30–65.90% fungal mycelium radial growth of all the tested plant pathogens. Minimum inhibitory concentrations (MICs) of bDHA against the tested plant pathogens were found in the range of 125–500 μg ml−1. Also, bDHA had a strong detrimental effect on spore germination for all the tested plant pathogens. Further, three plant pathogenic fungi, namely C. capsici, F. oxysporum and P. capsici, were subjected to an in vivo antifungal screening. bDHA at higher concentrations revealed a promising antifungal effect in vivo as compared to the positive control oligochitosan. Furthermore, elaborative study of GC-MS analysis was conducted on bioconverted oil extract of DHA to identify the transformation products present in bDHA. The results of this study indicate that the oil extract of bDHA has potential value of industrial significance to control plant pathogenic fungi.  相似文献   

18.

Background  

Several strains of bacteria have sequenced and annotated genomes, which have been used in conjunction with biochemical and physiological data to reconstruct genome-scale metabolic networks. Such reconstruction amounts to a two-dimensional annotation of the genome. These networks have been analyzed with a constraint-based formalism and a variety of biologically meaningful results have emerged. Staphylococcus aureus is a pathogenic bacterium that has evolved resistance to many antibiotics, representing a significant health care concern. We present the first manually curated elementally and charge balanced genome-scale reconstruction and model of S. aureus' metabolic networks and compute some of its properties.  相似文献   

19.
Background Rhizoctonia solani is a pathogenic fungus that causes serious diseases in many crops, including rice, wheat, and soybeans. In crop production, it is very important to understand the pathogenicity of this fungus, which is still elusive. It might be helpful to comprehensively understand its genomic information using different genome annotation strategies.MethodsAiming to improve the genome annotation of R. solani, we performed a proteogenomic study based on the existing data. Based on our study, a total of 1060 newly identified genes, 36 revised genes, 139 single amino acid variants (SAAVs), 8 alternative splicing genes, and diverse post-translational modifications (PTMs) events were identified in R. solani AG3. Further functional annotation on these 1060 newly identified genes was performed through homology analysis with its 5 closest relative fungi.ResultsBased on this, 2 novel candidate pathogenic genes, which might be associated with pathogen-host interaction, were discovered. In addition, in order to increase the reliability and novelty of the newly identified genes in R. solani AG3, 1060 newly identified genes were compared with the newly published available R. solani genome sequences of AG1, AG2, AG4, AG5, AG6, and AG8. There are 490 homologous sequences. We combined the proteogenomic results with the genome alignment results and finally identified 570 novel genes in R. solani.ConclusionThese findings extended R. solani genome annotation and provided a wealth of resources for research on R. solani.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号