首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
We investigated the function of the tomato (Lycopersicon esculentum) E8 gene. Previous experiments in which antisense suppression of E8 was used suggested that the E8 protein has a negative effect on ethylene evolution in fruit. E8 is expressed in flowers as well as in fruit, and its expression is high in anthers. We introduced a cauliflower mosaic virus 35S-E8 gene into tomato plants and obtained plants with overexpression of E8 and plants in which E8 expression was suppressed due to co-suppression. Overexpression of E8 in unripe fruit did not affect the level of ethylene evolution during fruit ripening; however, reduction of E8 protein by cosuppression did lead to elevated levels during ripening. Levels for ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), and ACC oxidase mRNA were increased approximately 7-fold in fruit of plants with reduced E8 protein. Levels of ACC synthase 2 mRNA were increased 2.5-fold, and ACC synthase 4 mRNA was not affected. Reduction of E8 protein in anthers did not affect the accumulation of ACC or of mRNAs encoding enzymes involved in ethylene biosynthesis. Our results suggest that the product of the E8 reaction participates in feedback regulation of ethylene biosynthesis during fruit ripening.  相似文献   

3.
S-adenosylmethionine (SAM), a major substrate in 1-C metabolism is a common precursor in the biosynthetic pathways of polyamines and ethylene, two important plant growth regulators, which exhibit opposing developmental effects, especially during fruit ripening. However, the flux of various substrates including SAM into the two competing pathways in plants has not yet been characterized. We used radiolabeled 14C-Arg, 14C-Orn, L-[U-14C]Met, 14C-SAM and 14C-Put to quantify flux through these pathways in tomato fruit and evaluate the effects of perturbing these pathways via transgenic expression of a yeast SAM decarboxylase (ySAMDC) gene using the fruit ripening-specific promoter E8. We show that polyamines in tomato fruit are synthesized both from Arg and Orn; however, the relative contribution of Orn pathway declines in the later stages of ripening. Expression of ySAMDC reversed the ripening associated decline in spermidine (Spd) and spermine (Spm) levels observed in the azygous control fruit. About 2- to 3-fold higher levels of labeled-Spd in transgenic fruit (556HO and 579HO lines) expressing ySAMDC confirmed the enzymatic function of the introduced gene. The incorporation of L-[U-14C]Met into Spd, Spm, ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) was used to determine Met-flux into these metabolites. The incorporation of 14C-Met into Spd/Spm declined during ripening of the control azygous fruit but this was reversed in fruits expressing ySAMDC. However, incorporation of 14C-Met into ethylene or ACC during ripening was not altered by the expression of ySAMDC in the fruit. Taken together these results show that: (1) There is an inverse relationship between the production of higher polyamines and ethylene during fruit ripening, (2) the inverse relationship between higher polyamines and ethylene is modulated by ySAMDC expression in that the decline in Spd/Spm during fruit ripening can be reversed without significantly altering ethylene biosynthesis, and (3) cellular flux of SAM in plants is homeostatically regulated based on its demand for competing pathways.  相似文献   

4.
5.
We have utilized a gene from bacteriophage T3 that encodes the enzyme S-adenosylmethionine hydrolase (SAMase) to generate transgenic tomato plants that produce fruit with a reduced capacity to synthesize ethylene. S-adenosylmethionine (SAM) is the metabolic precursor of 1-aminocyclopropane-1-carboxylic acid, the proximal precursor to ethylene. SAMase catalyzes the conversion of SAM to methylthioadenosine and homoserine. To restrict the presence of SAMase to ripening fruit, the promoter from the tomato E8 gene was used to regulate SAMase gene expression. Transgenic tomato plants containing the 1.1 kb E8 promoter bore fruit that expressed SAMase during the breaker and orange stage of fruit ripening and stopped expression after the fruit fully ripened. Plants containing the 2.3 kb E8 promoter expressed SAMase at higher levels during the post-breaker phases of fruit ripening and had a substantially reduced capacity to synthesize ethylene.  相似文献   

6.
7.
8.
9.
Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, we manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Our results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.  相似文献   

10.
11.
12.
Tomato (Lycopersicon esculentum) plants were transformed with gene constructs containing a tomato alcohol dehydrogenase (ADH) cDNA (ADH 2) coupled in a sense orientation with either the constitutive cauliflower mosaic virus 35S promoter or the fruit-specific tomato polygalacturonase promoter. Ripening fruit from plants transformed with the constitutively expressed transgene(s) had a range of ADH activities; some plants had no detectable activity, whereas others had significantly higher ADH activity, up to twice that of controls. Transformed plants with fruit-specific expression of the transgene(s) also displayed a range of enhanced ADH activities in the ripening fruit, but no suppression was observed. Modified ADH levels in the ripening fruit influenced the balance between some of the aldehydes and the corresponding alcohols associated with flavor production. Hexanol and Z-3-hexenol levels were increased in fruit with increased ADH activity and reduced in fruit with low ADH activity. Concentrations of the respective aldehydes were generally unaltered. The phenotypes of modified fruit ADH activity and volatile abundance were transmitted to second-generation plants in accordance with the patterns of inheritance of the transgenes. In a preliminary taste trial, fruit with elevated ADH activity and higher levels of alcohols were identified as having a more intense “ripe fruit” flavor.  相似文献   

13.
14.
This paper describes the analysis of tomato plants transformed with a chimeric gene consisting of the promoter region of a fruit specifically expressed tomato gene linked to the ipt gene coding sequences from the Ti plasmid of Agrobacterium tumefaciens. The pattern of expression of this chimeric gene was found to be consistent with the expression of the endogenous fruit-specific gene and consequently, plants expressing the chimeric gene were phenotypically normal until fruit maturation and ripening. A dramatically altered fruit phenotype, islands of green pericarp tissue remaining on otherwise deep red ripe fruit, was then evident in many of the transformed plants. Cytokinin levels in transformed plant fruit tissues were 10 to 100-fold higher than in control fruit. In the leaves of a fruit-bearing transformant, despite a lack of detectable ipt mRNA accumulation, approximately fourfold higher than control leaf levels of cytokinin were detected. It is suggested that cytokinin produced in fruit is being transported to the leaves since accumulation in leaves of PR-1 and chitinase mRNAs, which encode defense-related proteins known to be induced by cytokinin, occurred only when the transformant was reproductively active. Effects of elevated cytokinin levels on tomato fruit gene expression and cellular differentiation processes are also described.  相似文献   

15.
16.
The catabolism of phospholipids initiated by phospholipase D (PLD, EC 3.1.4.4) is an inherent feature of developmental processes that include fruit growth and ripening. In cherry tomatoes (Lycopersicon esculentum Mill.), soluble and membrane-associated PLD activities increased during fruit development, which peaked at the mature green and orange stages. The increase in PLD activity was associated with a similar increase in the intensity of a 92 kDa band as demonstrated by western blot analysis. A full-length cDNA having 2430 bp and encoding a putative polypeptide with 809 amino acids, was isolated using tomato RNA, RT-PCR and 5' and 3' rapid amplification of cloned ends (RACE). Analysis of the primary and secondary structures showed the presence of the C2 domain, the PLD domain and several other features characteristic of PLD alpha. Microtom tomato plants transformed with antisense PLD alpha cDNA, were similar to untransformed plants and showed normal fruit set and development. The ethylene climacteric was delayed by over 7 d in the antisense PLD fruits, indicative of a slower ripening process. The leaves and unripened fruits of antisense PLD microtom plants possessed lowered PLD activity and PLD protein, as demonstrated by western blotting. However, during ripening, PLD activity in the transgenic fruits was maintained at a higher level than that in the untransformed control. Immunolocalization of PLD in microtom tomato fruits revealed the cytosol-membrane translocation of PLD during fruit development. The ripe fruits of antisense PLD celebrity plants possessed lowered PLD expression and activity and showed increased firmness and red colour. These results suggest that the expression of antisense PLD cDNA could be variable in different tomato varieties. The potential role of PLD in ethylene signal transduction events is discussed.  相似文献   

17.
In developing plants, free N-glycans occur ubiquitously at micromolar concentrations. Such oligosaccharides have been proposed to be signaling molecules in plant development. As a part of a study to elucidate the physiological roles of de-N-glycosylation machinery involved in fruit ripening, we analyzed changes in the amounts and structural features of free N-glycans in tomato fruits at four ripening stages. The amount of high-mannose type free N-glycans increased significantly in accordance with fruit ripening, and the relative amounts of high-molecular size N-glycans, such as Man8-9GlcNAc1, became predominant. These observations suggest that the de-N-glycosylation machinery, including endo-β-N-acetylglucosaminidase (ENGase) activity, is stimulated in the later stages of fruit ripening. But contrary to expectation, we found that total ENGase activities in the tomato fruits did not vary significantly with the ripening process, suggesting that ENGase activity must be maintained at a certain level, and that the expression of α-mannosidase involved in the clearance of free N-glycans decreases during tomato fruit ripening.  相似文献   

18.
19.
20.
Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTH5 and SlXTH8 from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTH5 and SlXTH8). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号