首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对两个梨品种不同成熟期果实贮藏过程中,整个果实以及果皮、果肉、果心的乙烯释放变化及果肉、种子的钙调素(CaM)含量进行测定。结果表明:(1)黄花品种完整果实及不同部位乙烯释放量都高于耐贮藏的湘南品种,且启动乙烯生成和形成乙烯峰值的时间也早于湘南品种;(2)果实不同部位形成峰值的顺序均依次为果心、果肉、果皮;(3)果实呼吸跃变过程中,CaM含量伴随乙烯释放量的上升而升高,乙烯峰值过后,CaM含量下降,果实衰老。  相似文献   

2.
水杨酸是一种天然抑制剂,对植物有多种多样的作用,新近研究报道,它是乙烯生物合成的一种新的抑制剂。本文用水杨酸处理番茄、苹果、梨等果实,储藏在室温下,不时检查SA对果实贮存保鲜的影响。其结果表明SA处理的果实,PG活性比对照低,而硬度大,抗病力强。番茄,苹果和梨的无病好果率比对照果提高10%以上。上述结果证明,用SA处理绿熟番茄及梨和苹果,能有效保存果实新鲜,增强抗病力和延长货架的寿命。  相似文献   

3.
猕猴桃果实采后生理研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
猕猴桃(Actinidia chinensis Planch.)属于呼吸跃变型果实,采后易软化腐烂,不耐贮藏,如何延长猕猴桃果实贮藏期限已成为猕猴桃产业发展壮大亟待解决的问题。猕猴桃果实采后生理变化强烈影响果实的贮藏期限和果实品质,特别是呼吸作用、乙烯合成及其信号转导系统和果实软化等,并且它们与猕猴桃贮藏保鲜技术的研发与应用密切相关。本文重点从这3个方面就国内外相关研究进展进行综述,并讨论它们对猕猴桃耐贮性的影响,以期为猕猴桃耐贮新品种的培育和贮藏保鲜技术的研发提供理论依据。  相似文献   

4.
The shelf life of Japanese pear fruit is determined by its level of ethylene production. Relatively high levels of ethylene reduce storage potential and fruit quality. We have identified RFLP markers tightly linked to the locus that determines the rate of ethylene evolution in ripening fruit of the Japanese pear. The study was carried out using sequences of two types of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase genes (PPACS1 and pPPACS2) and a ACC oxidase gene (PPAOX1) as probes on 35 Japanese pear cultivars expressing different levels of ethylene (0.0∼300 μl/kg fresh weight/h) in ripening fruit. When total DNA was digested with HindIII and probed with pPPACS1, we identified a band of 2.8 kb which was specific to cultivars having very high ethylene levels (≧10 μ1/kg f.w./h) during fruit ripening. The probe pPPACS2 identified a band of 0.8 kb specific to cultivars with moderate ethylene levels (0.5 μl/kg f.w./h–10 μl/kg f.w./h) during fruit ripening. The cultivars that produce high levels of ethylene possess at least one additional copy of pPPACS1 and those producing moderate levels of ethylene have at least one additional copy of pPPACS2. These results suggest that RFLP analysis with different ACC synthase genes could be useful for predicting the maximum ethylene level during fruit ripening in Japanese pear. Received: 1 July 1998 / Accepted: 6 October 1998  相似文献   

5.
6.
In Japanese pear (Pyrus pyrifolia Nakai), fruit storage potential is closely related to the amount of ethylene produced. We have developed a rapid and accurate method for analyzing genes involved in high ethylene production during fruit ripening in Japanese pear. This involves cleaved-amplified polymorphic sequences (CAPS) of two 1-aminocyclopropane-1-carboxylate (ACC) synthase genes (PPACS1 and PPACS2). Two CAPS markers (A for PPACS1 and B for PPACS2), associated with the amount of ethylene produced, were identified. Marker A was associated with high ethylene producers and marker B with moderate ethylene producers. The absence of these two markers enabled the identification of low ethylene producers. Using these markers, we have identified ethylene genotypes for 40 Japanese pear cultivars and two Chinese pear (P. bretschneideri) cultivars that are commercially important and used in breeding programs. Furthermore, we performed linkage analysis of these two genes in the F(2) population, which revealed that the recombination frequency between the two markers was 20.8 +/- 3.6%. This information is critical to the selection of parents and in breeding strategies to improve storage ability of Japanese pears.  相似文献   

7.
Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of ‘Jonagold’ apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1‐Methylcyclopropene (1‐MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1‐MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1‐MCP treated apples, whereas 1‐aminocyclopropane‐1‐carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1‐MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production.  相似文献   

8.
Y. C. Li    L. Z. An    Y. H. Ge    Y. Li    Y. Bi 《Journal of Phytopathology》2008,156(2):115-119
Ethanol‐dichloromethane crude extract from peel of pear (Pyrus bretschneideri Rehd. cv. Pingguoli) was separated by thin layer chromatographic plates and bioassayed with conidia of Alternaria alternata. The inhibition zones differed significantly in retention factor (Rf) at expanding stage, harvest time and after 100 days of cold storage. The compounds in the inhibition zones were isolated and identified with gas chromatography and mass spectroscopy. Palmitate methyl, oleic acid methyl, linolenic acid methyl and squalene were present at all stages. The concentration of these chemicals was the highest in expanding stage fruit peel and decreased rapidly with fruit development. It is suggested that these compounds may be the main antifungal compounds in the growing fruit. The phthalate alkyl esters occurred at relatively higher concentrations in pear peel at harvest and after 100 days of cold storage. Six phthalate alkyl esters were identified from peel of pear fruit after 100 days of cold storage. It is also supposed that these esters may be the antifungal compounds in postharvest pear.  相似文献   

9.
Y. C. Li    Y. Bi    L. Z. An 《Journal of Phytopathology》2007,155(1):56-60
Alternaria rot of Pingguoli pear occurred after latent infection. Fruit surfaces were asymptomatic within 60 days storage under cold condition (0°C, RH 85–90%), but black‐grey hyphae could be seen in the lenticels or calyx tube of Pingguoli pear after 90 days of storage. The tissue collapsed and resulted in visible black spots as the hyphae spread over the fruit. Average incidence of Alternaria rot of fruits from an orchard in Gansu was 28.86% at 100 days of storage. The main fungus isolated from the Alternaria rot on stored Pingguoli pear was identified as Alternaria alternata (Fr. : Fr.) Keissl. This pathogen was able to initially infect the fruit via two pathways during the growing season, and then remain in a latent state. The fungus first colonized the styles at the full‐blossoming stage, and then grew into the carpel cavities progressively after 50 days from petal fall. The percentage latent infection of A. alternata was up to 45% in the carpel cavity until the harvest time. The fungus also attacked fruit surfaces and remained latent in the fruit peel during fruit development. The percentage of A. alternata latent infection at the calyx end, middle part and stem end of the fruit peel was 40%, 24% and 42.8%, respectively, at harvest time.  相似文献   

10.
Camu–camu, a native fruit from the Amazon region, is a rich source of bioactive compounds. However, its intense metabolic activity and high-water content limit the fruit’s postharvest storage and marketing. The aim of this study, conducted in two parts, was to evaluate the effects of 1-MCP and storage temperature on the physiology and postharvest preservation of camu–camu fruit. In part 1 of the study, fruit harvested at maturity stage 3 were divided into groups: control, 1-methylcyclopropene (1-MCP; 900 nL L?1; 12 h) and ethylene (1000 µL L?1; 24 h) and were stored at 22?±?1 °C and 85?±?5% RH for 9 days. In part 2, fruit harvested at maturity stage 3 were stored at 5, 10, 15, 20, or 25?±?1 °C and 85?±?5% RH for 9 days. During storage, fruit were evaluated daily for decay, mass loss, respiratory activity, and ethylene production, and every 3 days they were evaluated for peel color, pulp firmness, soluble solids content, total titratable acidity, ascorbic acid, total chlorophyll, and total anthocyanins. Fruit treated with 1-MCP exhibited delayed ripening due to lower metabolic activity, as evidenced by delay to softening, reduced mass loss and no decay. Storage at 5 °C prevented ethylene production, mass loss, color changes, and maintained pulp firmness, while did not affect soluble solids content. The results indicated that storage of camu–camu fruit at 5 °C or at 25 °C following application of 900 nL L?1 1-MCP were effective strategies to delay ripening and maintain fruit quality up to 9 days.  相似文献   

11.
Duck pear (Pyrus bretschneideri Rehder) tends to develop browning core after 55 to 60 days storage at low temperature (0℃). Following physiological changes of the duck pear during storage at different temperature were investigated: (1) As compared with 20℃, ethylene release is obviously decreased and its peak is retarded for 15 days at 0℃. Levels of internal ethylene are variant at different individuals harvested at same time. Concentrations of internal ethylene are in accord with ethylene release. The higher internal ethylene is, the easier the pear core becomes brown. (2) At 0℃, activity of polyphenol oxidase in the core increases with ethylene release enhancement. After ethylene peak passes, its activity is lower than before. (3) The electric conductivity of cores is higher at 0℃ than at 20℃. During post climacteric period, the electric conductivity increases irreversibly, then browning core occurs. From above results, it is concluded that interactions between two factors induce the browrang core of the duck pears at low temperature. One is chilling injury caused by low temperature, another is ethylene function. They stimulate the activity of polyphenol oxidase and enhance the membrane permeability.  相似文献   

12.
13.
Effects of Chilling Temperatures on Ethylene Binding by Banana Fruit   总被引:2,自引:0,他引:2  
Banana fruit are highly susceptible to chilling injury during low temperature storage. Experiments were conducted to compare ethylene binding during storage at chilling (3 and 8 °C) versus optimum (13 °C) temperatures. The skins of fruit stored at 3 and 8 °C gradually darkened as storage duration increased. This chilling effect was reflected in increasing membrane permeability as shown by increased relative electrolyte leakage from skin tissue. In contrast, banana fruit stored for 8 days at 13 °C showed no chilling injury symptoms. Exposure of banana fruit to the ethylene binding inhibitor 1-methylcyclopropene (1 l l-1 1-MCP) prevented ripening. However, this treatment also enhanced the chilling injury accelerated the occurrence of chilling injury-associated increased membrane permeability. 14C-ethylene release assay showed that ethylene binding by banana fruit stored at low temperature decreased with reduced storage temperature and/or prolonged storage time. Fruit exposed to 1-MCP for 12 h and then stored at 3 or 8 °C exhibited lower ethylene binding than those stored at 13 °C. Thus, chilling injury of banana fruit stored at low temperature is associated with a decrease in ethylene binding. The ability of tissue to respond to ethylene is evidently reduced, thereby resulting in failure to ripen.  相似文献   

14.

The “Nanguo” pear is a typically climacteric fruit and ethylene is the main factor controlling the ripening process of climacteric fruit. Ethylene biosynthesis has been studied clearly and ACC synthase (ACS) is the rate-limited enzyme. ACO (ACC oxidase) is another important enzyme in ethylene biosynthesis. By exploring the pear genome, we identified 13 ACS genes and 11 ACO genes, respectively, and their expression patterns in fruit and other organs were investigated. Among these genes, 11 ACS and 8ACO genes were expressed in pear fruits. What’s more, 4 ACS and 3ACO genes could be induced by Ethephon and inhibited by 1-MCP treatment. This study is the first time to explore ACS and ACO genes at genome-wide level and will provide new data for research on pear fruit ripening.

  相似文献   

15.
A gene encoding an ethylene receptor protein was isolated from pear (Pyrus pyrifolia). This gene, designated PpERS (GenBank accession No. KC517482), was 1,918 bp in length with an open reading frame encoding a protein of 638 amino acids that shared high similarity with another pear ethylene receptor protein PpERS1, and two apple ethylene receptor proteins MdERS and MdERS1. The PpERS was grouped into the ETR1 subfamily of ethylene receptor based on its conserved domain and phylogenetic status. The PpERS gene contained five exons interrupted by four introns. Quantitative RT-PCR indicated that PpERS was differentially expressed in pear tissues and predominantly expressed in petals, shoots, anthers, and 160 days after full bloom fruit. The PpERS expression was regulated during fruit development. In addition, the PpERS gene expression was regulated by salicylic acid (SA) and ethylene in fruit. The results indicated that PpERS might participate in ethylene and SA signaling transduction during pear fruit development.  相似文献   

16.
The role of ethylene in the prevention of chilling injury in nectarines   总被引:1,自引:0,他引:1  
Woolliness is a chilling injury phenomenon occurring in nectarines held at low temperatures for extended periods. It is a disorder marked by altered cell wall metabolism during ripening leading to a dry, woolly texture in the fruit. Two treatments were found to alleviate this disorder. One was holding the fruits for 2 days at 20 °C before 0 °C storage (delayed storage) and the second was having ethylene present during cold storage (ethylene). Immediately stored fruit (control) had 88 percnt; woolliness while 7 percnt; of delayed storage and 15 percnt; of ethylene fruit showed woolliness. The severity of the injury in individual fruits was closely related to inhibition of ethylene evolution. Woolly fruit had higher levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and less 1-aminocyclopropane-1-carboxylic acid oxidase (ACO, EC 1.4.3) activity than healthy fruit. It is suggested that ethylene is essential for promoting the proper sequence of cell wall hydrolysis necessary for normal fruit softening. This is in contrast to chilling injury in other fruits, whereby ethylene is often a sign of incipient damage. Respiration was also found to be associated with chilling injury, in that fruit with woolliness had a depressed respiration.  相似文献   

17.
Exposure to high O2 concentrations may stimulate, have no effect or retard fruit ripening depending upon the commodity, O2 concentration and storage time among other variables. The ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) was used to investigate ethylene-mediated softening responses of Williams banana fruit exposed to elevated O2 for various periods of time. Fruit softening was measured at 25 °C and 90% relative humidity. Exposure to high O2 concentrations for 5 days resulted in accelerated softening. Softening of fruit treated with 1-MCP for 12 h followed by 5 days of storage in high O2 atmospheres at 25 °C was enhanced with increasing O2 concentration between 21 and 100%. However, overall softening was much less compared to non-1-MCP-treated fruit. Softening of 1-MCP-treated fruit was progressively enhanced with increasing holding time from 5 to 20 days. Fruit treated with 1-MCP and then held for 10 days in high O2 atmospheres followed by exposure to ethylene for 24 h and subsequent storage for 5 days at 25 °C softened more rapidly than those held in air for 10 days. 1-MCP-treated fruit held in various high O2 atmospheres can regain gradually the sensitivity to ethylene and finally ripen over time. Enhanced softening of fruit exposed to elevated O2 concentrations suggests that high O2 treatments enhance synthesis of new ethylene binding sites.  相似文献   

18.
The use of modified atmospheres has been successfully applied in different fruits to delay the ripening process and to prevent physiological disorders. In addition, during normal ripening, hypoxic areas are generated inside the fruit; moreover, anaerobic conditions may also arise during fruit post-harvest storage and handling. In consequence, the fruit is an interesting model to analyze the metabolic modifications due to changes in oxygen levels. In this work, a 72 h anoxic treatment by using an N(2) storage atmosphere was applied to peaches (Prunus persica L. Batsch) after harvest. Ripening was effectively delayed in treated fruits, preventing fruit softening, color changes and ethylene production. Metabolic changes induced by anoxia included induction of fermentative pathways, glycolysis and enzymes involved in both sucrose synthesis and degradation. Sucrose, fructose and glucose contents remained unchanged in treated fruit, probably due to sucrose cycling. Sorbitol was not consumed and citrate was increased, correlating with citric acid cycle impairment due to O(2) deprivation. Malate content was not affected, indicating compensation in the reactions producing and consuming malate. Changes in malic enzymes and pyruvate orthophosphate dikinase may provide pyruvate for fermentation or even act to regenerate NADP. After fruit transfer to aerobic conditions, no signs of post-anoxia injury were observed and metabolic changes were reversed, with the exception of acetaldehyde levels. The results obtained indicate that peach fruit is an organ with a high capacity for anoxic tolerance, which is in accord with the presence of hypoxic areas inside fruits and the fact that hypoxic pre-treatment improves tolerance to subsequent anoxia.  相似文献   

19.
克隆了库尔勒香梨(Pyrus sinkiangensis Yü)脂氧合酶(lipoxygenase,LOX)基因PsLOX,了解其在香梨果实不同发育时期的表达差异,为香梨果实香气代谢机理研究提供理论依据。以库尔勒香梨嫩叶及不同时期果实表皮为试材,利用两种不同的方法提取总RNA,通过RT-PCR技术得到目的基因PsLOX的cDNA序列,以生物信息学方法对其进行分析和功能预测。运用半定量RT-PCR (SqRT-PCR)技术,分析PsLOX基因在香梨嫩叶及果实生长发育及货架期的表达特性和差异。结果:试剂盒提取总RNA质量较高,PsLOX基因CDS序列为912 bp,编码303个氨基酸,属于脂氧合酶家族基因,与其他植物LOX基因编码的氨基酸序列有较高的同源性,与南果梨相似性最高,达到99%;PsLOX基因在香梨果实中发育过程中表达差异明显,即生长发育前期表达量很低,成熟至完熟时期表达量最高,然后开始减少。推测克隆获得PsLOX基因在香梨果实香气代谢过程中起到重要作用。  相似文献   

20.
??Empire?? apple fruit are more susceptible to flesh browning at 3.3°C if treated with 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception. To better understand the metabolic changes associated with this browning, untargeted metabolic profiling with partial least squares analysis has been used to visualize changes in metabolic profile during hypoxic controlled atmosphere (CA) storage, ethylene insensitivity, and disorder development. Overall, most carbohydrates and organic acids were not appreciably affected, but the levels of amino acids and volatile metabolites were significantly affected, by 1-MCP treatment. Sorbitol and levels of some amino acids were elevated towards the end of storage in 1-MCP treated fruit. CA storage reduced the levels of many volatile components and 1-MCP reduced these levels further. Additionally multiple metabolites were associated with the development of flesh browning symptoms. Unlike other volatile compounds, methanol levels gradually increased with storage duration, regardless of 1-MCP treatment, while 1-MCP decreased ethanol production. Results reveal metabolic changes during storage that may be associated with development of flesh browning symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号