首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to make a survey describing factors that influence the production of extracellular enzymes by white-rot fungus Ceriporiopsis subvermispora responsible for the degradation of lignocellulolytic materials. These factors were: carbon sources (glucose, cellulose, hemicellulose, lignin, maltose and starch), nitrogen sources (ammonium sulphate, potassium nitrate, urea, albumin and peptone), pH, temperature and addition of three different concentrations of Cu2+ and Mn2+. The cellulase and xylanase activities were similar in medium with different carbon sources and the highest cellulase and xylanase activities were measured in medium with urea and potassium nitrate as nitrogen sources, respectively. The highest laccase activity was observed in medium with lignin and peptone as carbon and nitrogen sources. In other experiments, time course of production of lignocellulolytic enzymes by white-rot fungus C. subvermispora in medium with lignin or glucose as carbon sources was observed.  相似文献   

2.
《Process Biochemistry》2010,45(12):1904-1911
To further enhance the accumulation of the bioactive metabolite ganoderic acid (GA) by fermentation of the medicinal mushroom Ganoderma lucidum, a novel integrated strategy was developed by simultaneously adopting a strategy of multiple Cu2+ additions, three-stage light irradiation and multi-pulse feeding of carbon and nitrogen sources. Maximal GA content (i.e., 4.1 mg/100 mg DW) and production (i.e., 720.8 mg/L) were obtained using the novel integrated strategy. Not only the biomass but also the total GA production obtained in this work is the highest reported for a shaker flask culture of G. lucidum. This work is useful for the large-scale production of GA by G. lucidum fermentation.  相似文献   

3.
4.
为了探讨重金属Cd2+和Cu2+胁迫对泥蚶消化酶活性的影响,运用酶学分析的方法,按《渔业水质标准》(GB 11607)规定的Cd2+、Cu2+最高限量值的1、2、5、10倍设置重金属离子Cd2+、Cu2+浓度及其组合,研究了在重金属Cd2+、Cu2+胁迫下,30d内泥蚶3种消化酶活性的变化规律。结果表明:与空白对照组相比,在重金属Cd2+、Cu2+或其组合的胁迫下,较低浓度组泥蚶的淀粉酶活性实验前期增强(即被诱导),实验后期减弱(即被抑制),较高浓度组泥蚶的淀粉酶活性从实验一开始就减弱,并保持在较低水平,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合Cu2+ > (Cd2++Cu2+)组合 > Cd2+;泥蚶脂肪酶的活性实验前期增强,实验后期转为微减弱或减弱,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合(Cd2++Cu2+)组合 > Cu2+ > Cd2+;泥蚶胃蛋白酶的活性实验前期增强,且活性呈现升高-降低-再升高-再降低的变化,实验后期分别表现微增强、微减弱和减弱,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合(Cd2++Cu2+)组合 > Cu2+ > Cd2+。可见:环境中的Cd2+和Cu2+对泥蚶的消化酶活性起着明显的影响作用。  相似文献   

5.
Cu2+, Zn2+, Fe2+ and I are often supplemented to the diet of suckling and early weaning piglets, but little information is available regarding the effects of different Cu2+, Zn2+, Fe2+ and I mixtures on bacteria growth, diversity and fermentation characteristics of fermented liquid diet for piglets. Pyrosequencing was performed to investigate the effect of Cu2+, Zn2+, Fe2+ and I mixtures on the diversity, growth and fermentation characteristics of bacteria in the liquid diet fermented with Bacillus subtilis and Enterococcus faecalis under air-tight condition. Results showed that the mixtures of Cu2+, Zn2+, Fe2+ and I at different concentrations promoted Bacillus growth, increased bacterial diversity and lactic acid production and lowered pH to about 5. The importance of Cu2+, Zn2+, Fe2+ and I is different for Bacillus growth with the order Zn2+> Fe2+>Cu2+> I in a 21-d fermentation and Cu2+>I>Fe2+>Zn2+ in a 42-d fermentation. Cu2+, Zn2+, Fe2+ and I is recommended at a level of 150, 60, 150 and 0.6 mg/kg respectively for the production of fermented liquid diet with Bacillus subtilis. The findings improve our understanding of the influence of trace elements on liquid diet fermentation with probiotics and support the proper use of trace elements in the production of fermented liquid diet for piglets.  相似文献   

6.
The effects of Cu2+ on growth, chlorophyll and other ion contents ofKoeleria splendens originated from Cu-contaminated soil have been investigated in nutrient solution. The most evident Cu2+ effects concern the root growth, especially the root length. Since in plants grown under lower Cu2+ concentrations (4 and 8 μM) root elongation, biomass, chlorophyll, Mg2+, Fe2+, Ca2+ and K+ content were increased compared with the control, the development of an adaptive mechanism ofK. splendens to Cu2+ is suggested. High Cu2+ concentration (160 μM) caused a significant reduction in root length and biomass as well as a decreased rate of chlorophyll biosynthesis. The reduction of growth can be correlated with the toxic effect of Cu2+ on photosynthesis, root respiration and protein synthesis in roots. 160 μM Cu2+-treatment had a negative influence on the concentrations of Ca2+, Fe2+, Mg2+ and K+ and a positive influence on the Cu2+ concentration in the plant tissues. Loss of nutrients similar to the senescence response suggests that excess of Cu2+ leads to the progressive senescence of the plants. Our results demonstrate the existence of an adaptive mechanism ofK. splendens under low Cu2+ concentrations, while high Cu2+ quantities cause disturbances in plant function.  相似文献   

7.
8.
Lignocelluloses have been used as carbon sources for bioflocculant production. However, the low bioconversion efficiency of lignocellulose to bioflocculants is a major challenge. In this study, a lignocellulolytic strain of Alcaligenes faecalis-X3 was cultivated in ramie bio-degumming wastewater. Optimal production of ligninase, cellulase and bioflocculants (MBF-X3) was evaluated. The highest activity of MBF-X3 under the optimal conditions of pH 6.0 at 48 h of fermentation was 95.44%, with the maximum production of ligninase and cellulase (0.27 and 0.12 U/mL, respectively). The crude ligninase and cellulase had optimum activities at pH 5.0 and 40 °C and pH 6.0 and 50 °C, respectively. The cellulase activity was increased by Mn2+, Ca2+, Zn2+, and Mg2+ at 1 mM. The ligninase activity was significantly enhanced in the presence of Zn2+ at 10 mM. The flocculating activity of MBF-X3 was not changed by the addition of any metal cation. The results demonstrated that A. faecalis possesses an excellent enzyme system for the efficient bioconversion of lignocellulose into MBF-X3. Additionally, MBF-X3 has a high flocculating efficiency of Disperse Blue-2BLN (85.7%) at a dose of 1.0 g/L.  相似文献   

9.
Citr+Lactococcus lactis subsp. lactis 3022 produced more biomass and converted most of the glucose substrate to diacetyl and acetoin when grown aerobically with hemin and Cu2+. The activity of diacetyl synthase was greatly stimulated by the addition of hemin or Cu2+, and the activity of NAD-dependent diacetyl reductase was very high. Hemin did not affect the activities of NADH oxidase and lactate dehydrogenase. These results indicated that the pyruvate formed via glycolysis would be rapidly converted to diacetyl and that the diacetyl would then be converted to acetoin by the NAD-dependent diacetyl reductase to reoxidize NADH when the cells were grown aerobically with hemin or Cu2+. On the other hand, the YGlu value for the hemincontaining culture was lower than for the culture without hemin, because acetate production was repressed when an excess of glucose was present. However, in the presence of lipoic acid, an essential cofactor of the dihydrolipoamide acetyltransferase part of the pyruvate dehydrogenase complex, hemin or Cu2+ enhanced acetate production and then repressed diacetyl and acetoin production. The activity of diacetyl synthase was lowered by the addition of lipoic acid. These results indicate that hemin or Cu2+ stimulates acetyl coenzyme A (acetyl-CoA) formation from pyruvate and that lipoic acid inhibits the condensation of acetyl-CoA with hydroxyethylthiamine PPi. In addition, it appears that acetyl-CoA not used for diacetyl synthesis is converted to acetate.  相似文献   

10.
The physiological function of the clostridial NADH- and NADPH-ferredoxin oxidoreductases was investigated with Clostridium pasteurianum and Clostridium butyricum.The NADH-ferredoxin oxidoreductases are concluded to be catabolic enzymes required for the reduction of ferredoxin by NADH. The conclusion is based on the finding that during the entire growth phase the fermentation of glucose can be formally represented by the weighted sum of Eqns 1 and 2, Glucose + 2 H2O → 1 butyrate? + 2 HCO3? + 3 H+ + 2 H2 (1) Glucose + 4 H2O → 2 acetate? + 2 HCO3? + 4 H+ + 4 H2 (2) and that in these redox processes NADH rather than NADPH is specifically formed during glyceraldehyde phosphate dehydrogenation. This NADH can be consumed by substrate reduction in Process 1 only, while it must be reoxidized in Process 2 by the ferredoxin-dependent proton reduction to hydrogen which involves the NADH-ferredoxin oxidoreductases.The kinetic and regulatory properties of these enzymes are in line with their catabolic role: they are found with high specific activities typical for other catabolic enzymes; essentially they catalyze electron flow from NADH to ferredoxin only because the back reaction is very effectively inhibited by low concentrations of NADH. These enzymes have a key role in the coupling of the two partial processes and in regulating the overall thermodynamic efficiency of the fermentations.The NADPH-ferredoxin oxidoreductases are concluded to participate in anabolism; they are required for the regeneration of NADPH. The conclusion is based on the finding that in the two clostridia all catabolic oxidations-reductions are specific for NAD(H) and that the usual NADPH-producing processes such as the glucose 6-phosphate dehydrogenase or malate enzyme reactions are absent. The kinetic properties of the enzymes are in agreement with their anabolic function: the NADPH-ferredoxin oxidoreductases are found with sufficient specific activities; they preferentially catalyze electron transfer from reduced ferredoxin to NADP+.  相似文献   

11.
The influence of increasing copper concentrations on seed germination, seedling survival and radicle length ofMinuartia hirsuta, Silene compacta, Alyssum montanum andThlaspi ochroleucum was studied. Seed germination was highly affected by the higher Cu2+ concentrations (80 and 160 μM), while lower Cu2+ concentrations seemed to be necessary for seed germination, even for the plants originated from non-Cu2+-rich soils (i.e. A. montanum). Nevertheless, plants originated from Cu2+-rich soils (M. hirsuta, S. compacta) showed a higher demand of Cu2+ for rapid seed germination. Cu2+ at higher concentrations severely reduced growth rate of radicle, especially inA. montanum andT. ochroleucum. These data clearly indicate the reduced suitability of the above mentioned plant species for reclamation on Cu2+ soils. Lower Cu2+-concentrations had no influence on seedling survival inM. hirsuta andS. compacta, but a progressive reduction of a number of survived seedlings with increasing Cu2+ concentration was found, that was more pronounced inA. montanum andT. ochroleucum.  相似文献   

12.
Trace element contamination of lands is a serious environmental problem that limits yield and threatens human health. To study the combined effect of high salinity and toxic levels of trace elements on halophytes, the performance of two marsh species, Atriplex halimus and Suaeda fruticosa, grown for 1 month with an irrigation solution supplemented with 200 mM NaCl and 400 μM Cd2+ or 400 μM Cu2+ was evaluated. The effect of the combined stress conditions on hormone signaling was also assessed. Biomass production and chlorophyll content decreased under Cd2+ stress in both species, whereas Cu2+ had a lower impact on plant performance. The different plant sensibilities to the two trace elements assayed indicate that each metal has a different effect on plants. Furthermore, the deleterious effect of metal toxicity was alleviated when NaCl was added to the irrigation solution, demonstrating that NaCl improves plant performance and tolerance of halophytic species to cope with trace element intoxication. Results show that both species accumulated important quantities of Cd2+ and Cu2+ in roots (Cd2+: 2,690–3,130 μg g?1 DW and Cu2+: 2,070–2,770 μg g?1 DW); this finding allows us to classify these species among the hyperaccumulator plants. Cd2+ and Cu2+ differently affected endogenous phytohormone contents in both species. Data suggest an essential involvement of roots on the regulation of tolerance to trace elements. Therefore, indole-3-acetic acid levels increased in roots of both species irrigated with high levels of Cd2+, which suggests that the auxin may stimulate root promotion and growth under these stress conditions. Other compounds, classically considered as “stress hormones” showed very different patterns of accumulation. Whereas, salicylic acid (SA) levels in roots and leaves increased in response to Cd2+, root contents of jasmonic acid (JA), and abscisic acid (ABA) decreased. In leaves, the rambling pattern of accumulation observed for JA and ABA suggested the lack of a specific role in regulation against trace element toxicity. Together, data suggest that SA could act as a specific signal that detects trace element toxicity, whereas JA and ABA promote general responses against abiotic stress.  相似文献   

13.
The interaction of redox-active copper ions with misfolded amyloid β (Aβ) is linked to production of reactive oxygen species (ROS), which has been associated with oxidative stress and neuronal damages in Alzheimer disease. Despite intensive studies, it is still not conclusive how the interaction of Cu+/Cu2+ with Aβ aggregates leads to ROS production even at the in vitro level. In this study, we examined the interaction between Cu+/Cu2+ and Aβ fibrils by solid-state NMR (SSNMR) and other spectroscopic methods. Our photometric studies confirmed the production of ∼60 μm hydrogen peroxide (H2O2) from a solution of 20 μm Cu2+ ions in complex with Aβ(1–40) in fibrils ([Cu2+]/[Aβ] = 0.4) within 2 h of incubation after addition of biological reducing agent ascorbate at the physiological concentration (∼1 mm). Furthermore, SSNMR 1H T1 measurements demonstrated that during ROS production the conversion of paramagnetic Cu2+ into diamagnetic Cu+ occurs while the reactive Cu+ ions remain bound to the amyloid fibrils. The results also suggest that O2 is required for rapid recycling of Cu+ bound to Aβ back to Cu2+, which allows for continuous production of H2O2. Both 13C and 15N SSNMR results show that Cu+ coordinates to Aβ(1–40) fibrils primarily through the side chain Nδ of both His-13 and His-14, suggesting major rearrangements from the Cu2+ coordination via Nϵ in the redox cycle. 13C SSNMR chemical shift analysis suggests that the overall Aβ conformations are largely unaffected by Cu+ binding. These results present crucial site-specific evidence of how the full-length Aβ in amyloid fibrils offers catalytic Cu+ centers.  相似文献   

14.
Chick brain microsomal ATPase was strongly inhibited by Cu2+. (Na+ + K+)-ATPase was more susceptible to low levels of Cu2+ than Mg2+-ATPase. The inhibition of (Na+ + K+)-ATPase could be partially protected from Cu2+ in the presence of ATP in the preincubation period. When Cu2+ (6 μM) was preincubated with the enzyme in the absence of ATP, only sulfhydryl-containing amino acids (d-penicillamine and l-cysteine) could reverse the inhibition. At lower concentrations of Cu2+ (< 1.4 μM), in the absence of ATP during preincubation, the inhibition could be completely reversed by the addition of 5 mM l-phenylalanine and l-histidine as well as d-penicillamine and l-cysteine.Kinetic analysis of action of Cu2+ (1.0 μM) on (Na+ + K+)-ATPase revealed that the inhibition was uncompetitive with respect to ATP. At a low concentration of K+ (5 mM), V with Na+ was markedly decreased in the presence of Cu2+ and Km was about twice that of the control. However, at high K+ concentration (20 mM), the Km for Na+ was not affected. At both low (25 mM) and high (100 mM) Na+, Cu2+ displayed non-competitive inhibition of the enzyme with respect to K+.On the basis of these data, we suggest that Cu2+ at higher concentrations (> 6 μM) inactivates the enzyme irreversibly, but that at lower concentrations (< 1.4 μM), Cu2+ interacts reversibly with the enzyme.  相似文献   

15.
Aberrant copper homeostasis and oxidative stress have critical roles in several neurodegenerative diseases. Expression of heat-shock protein 27 (Hsp27) is elevated under oxidative stress as well as upon treatment with Cu2+, and elevated levels of Hsp27 are found in the brains of patients with Alzheimer and Parkinson diseases. We demonstrate, using steady-state and time-resolved fluorescence spectroscopy as well as isothermal titration calorimetry studies, that Hsp27 binds Cu2+ with high affinity (Kd ~10−11 M). Treating IMR-32 human neuroblastoma cells with Cu2+ leads to upregulation of endogenous Hsp27. Further, overexpression of Hsp27 in IMR-32 human neuroblastoma cells confers cytoprotection against Cu2+-induced cell death. Hsp27 prevents the deleterious interaction of Cu2+ with α-synuclein, the protein involved in Parkinson disease and synucleinopathies. Hsp27 attenuates Cu2+- or Cu2+–α-synuclein-mediated generation of reactive oxygen species and confers cytoprotection on IMR-32 cells as well as on mouse primary neural precursor cells. Hsp27 prevents Cu2+–ascorbate or Cu2+–α-synuclein–ascorbate treatment-induced increase in mitochondrial superoxide level and mitochondrial disorganization in IMR-32 cells. Hsp27 dislodges the α-synuclein-bound Cu2+ and prevents the Cu2+-mediated amyloidogenesis of α-synuclein. Our findings that Hsp27 binds Cu2+ with high affinity leading to beneficial effects and that Hsp27 can dislodge Cu2+ from α-synuclein, preventing amyloid fibril formation, indicate potential therapeutic strategies for neurodegenerative diseases involving aberrant Cu2+ homeostasis.  相似文献   

16.
The influence of Cu2+ ions (in the form of CuCl2) in the concentration range 10?3 to 10?6 M on the content and biosynthesis of indole glucosinolates glucobrassicin and neoglucobrassicin has been studied on etiolated seedlings of rape (Brassica napus var.arvensis (Lam.) Thell.). Ions Cu2+ acted on the seedlings either chronically from the beginning of the germination or acutely, during 3 to 72 h, on seven days old seedlings. The biosynthesis of both glucosinolates was followed by the incorporation of35S from Na2 35SO4 into them in hypocotyl segments from seven days old intact etiolated seedlings. After the entry of small amounts of Cu2+ ions into the plants, stimulation of the glucosinolates formation occurs, as was found after three h action of Cu2+ ions. After the entry of a greater amount of Cu2+ ions into the plant, harmful effects appear, as was found after chronic two days action or after 24 and 48 hours acute action of Cu2+ ions. Later further stimulation of glucosinolate formation occurs, probably due to enhanced metabolism during reparation processes, as was manifested after chronic action of Cu2+ ions lasting four and eight days. The optimal effect of copper was found mainly in the concentration range 5×10?4 M to 10?5 M. Ions Cu2+ in higher concentration increased the uptake of sulphate ions by hypocotyl segments, and in lower concentrations increased the incorporation of35S from35SO4 2? into the proteins.  相似文献   

17.
Elevated concentrations of Cu2+ can have inhibitory effects on early development in plants and algae by targeting specific cellular processes. In the present study the effects of elevated Cu2+ on developmental processes in embryos of the brown algae Fucus serratus (Phaeophyceae) were investigated. Elevated Cu2+ was shown to inhibit fixation of the zygotic polar axis but not its formation. Actin localization was unaffected by elevated Cu2+ but polarized secretion, which occurs downstream, was inhibited. Significant differences in tolerance to Cu2+ were observed for polarization and rhizoid elongation of embryos derived from adults from Cu2+‐contaminated and uncontaminated locations. Moderate Cu2+ exposure inhibited the generation of cytosolic Ca2+ signals in response to hypo‐osmotic shocks. In contrast, cytosolic Ca2+ was elevated by treatments with high [Cu2+] and this coincided with production of reactive oxygen species. The results indicate that direct effects on signalling processes involved in polarization and growth may in part explain complex, concentration‐dependent effects of Cu2+ on early development.  相似文献   

18.
付川  余顺慧  黄怡民  邓洪平 《生态学报》2014,34(5):1149-1155
为阐明紫花苜蓿(Medicago sativa L.)对铜胁迫的耐性机理,采用准确度好、分辨率高和简便快捷的傅里叶变换红外光谱法(FTIR)研究在不同铜浓度(0、1、5、20、100 mol/L)处理时紫花苜蓿根、茎、叶化学组分的变化。结果表明:随着铜处理浓度的增加,紫花苜蓿根、茎、叶生物量变化不大。其根组织在2924 cm~(-1)处峰高处呈现出先下降后上升的趋势,反映了在低铜(5 mol/L)处理条件下紫花苜蓿分泌的有机酸不断螯合Cu,造成羧酸0-H的减少,但随着Cu含量的升高,其羧酸螯合力变弱,有机酸含量渐渐升高;根组织在1381 cm~(-1)处峰高先下降后上升,反映了含油脂化合物含量先下降后升高。可能与植物在细胞壁结构上增强抗逆性有一定关系,即低Cu处理下细胞壁可能通过提高阳离子交换能力(CEC),增强了耐Cu性;茎组织在2924,1643,1381,1064 cm~(-1)等处峰高无明显变化;叶组织所有峰值在低浓度(5 mol/L)Cu处理下变化不明显,高浓度(5 moL/L)Cu处理下所有峰值先升后降,随着这可能与可溶性糖及可溶性蛋白质等物质含量都呈现先升后降的趋势有关。这表明紫花苜蓿通过根部有机酸含量的变化和提高细胞壁阳离子交换能力,将吸收的Cu大部分积累在根部,阻止Cu向地上部分运输,有效地保护了植物地上部分组织。  相似文献   

19.
An aminopeptidase was purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that included diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, gel filtration, and high-performance liquid chromatography over an anion-exchange column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band with a molecular weight of 95,000. The aminopeptidase was capable of degrading several peptides by hydrolysis of the N-terminal amino acid. The peptidase had no endopeptidase or carboxypeptidase activity. The aminopeptidase activity was optimal at pH 7 and 40°C. The enzyme was completely inactivated by the p-chloromecuribenzoate mersalyl, chelating agents, and the divalent cations Cu2+ and Cd2+. The activity that was lost by treatment with the sulfhydryl-blocking reagents was restored with dithiothreitol or β-mercapto-ethanol, while Zn2+ or Co2+ restored the activity of the 1,10-phenantroline-treated enzyme. Kinetic studies indicated that the enzyme has a relatively low affinity for lysyl-p-nitroanilide (Km, 0.55 mM) but that it can hydrolyze this substrate at a high rate (Vmax, 30 μmol/min per mg of protein).  相似文献   

20.
The cell growth and total accumulation of bioactive metabolites were significantly improved by Cu2+ addition during the submerged fermentation of medicinal mushroom Ganoderma lucidum. A mathematical model, constructed by response surface methodology combination with full factorial design, was applied to study the synergic effect of Cu2+ addition concentration and addition time. The optimal Cu2+ inducement strategy for the cell growth were different from those for the biosynthesis of ganoderic acid (GA) and Ganoderma polysaccharide. A multiple additions strategy of Cu2+ by adding each 1 mM Cu2+ on day 2, 6, 8 and 2 mM Cu2+ on day 4 was developed to enhance total accumulation of GA and extracellular polysaccharides. The highest GA content reached 3.0 ± 0.1 mg per 100 mg DW, which was increased by 76.5% and 33.9% compared with the control without Cu2+ addition and the peak value predicted by the constructed mathematical model, respectively. While, relatively higher addition concentration of Cu2+ (i.e., 5 mM) on the culture of day 4 led to higher content and total production of intracellular polysaccharides. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号