首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the benefits of Digital PCR (dPCR) is the potential for unparalleled precision enabling smaller fold change measurements. An example of an assessment that could benefit from such improved precision is the measurement of tumour-associated copy number variation (CNV) in the cell free DNA (cfDNA) fraction of patient blood plasma. To investigate the potential precision of dPCR and compare it with the established technique of quantitative PCR (qPCR), we used breast cancer cell lines to investigate HER2 gene amplification and modelled a range of different CNVs. We showed that, with equal experimental replication, dPCR could measure a smaller CNV than qPCR. As dPCR precision is directly dependent upon both the number of replicate measurements and the template concentration, we also developed a method to assist the design of dPCR experiments for measuring CNV. Using an existing model (based on Poisson and binomial distributions) to derive an expression for the variance inherent in dPCR, we produced a power calculation to define the experimental size required to reliably detect a given fold change at a given template concentration. This work will facilitate any future translation of dPCR to key diagnostic applications, such as cancer diagnostics and analysis of cfDNA.  相似文献   

2.
3.
4.
Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA.  相似文献   

5.
《Cytotherapy》2023,25(1):94-102
Background aimsVector copy number (VCN), an average quantification of transgene copies unique to a chimeric antigen receptor (CAR) T-cell product, is a characteristic that must be reported prior to patient administration, as high VCN increases the risk of insertional mutagenesis. Historically, VCN assessment in CAR T-cell products has been performed via quantitative polymerase chain reaction (qPCR). qPCR is reliable along a broad range of concentrations, but quantification requires use of a standard curve and precision is limited. Digital PCR (dPCR) methods were developed for absolute quantification of target sequences by counting nucleic acid molecules encapsulated in discrete, volumetrically defined partitions. Advantages of dPCR compared with qPCR include simplicity, reproducibility, sensitivity and lack of dependency on a standard curve for definitive quantification. In the present study, the authors describe a dPCR assay developed for analysis of the novel bicistronic CD19 × CD22 CAR T-cell construct.MethodsThe authors compared the performance of the dPCR assay with qPCR on both the QX200 droplet dPCR (ddPCR) system (Bio-Rad Laboratories, Inc, Hercules, CA, USA) and the QIAcuity nanoplate-based dPCR (ndPCR) system (QIAGEN Sciences, Inc, Germantown, MD, USA). The primer–probe assay was validated with qPCR, ndPCR and ddPCR using patient samples from pre-clinical CAR T-cell manufacturing production runs as well as Jurkat cell subclones, which stably express this bicistronic CAR construct.ResultsddPCR confirmed the specificity of this assay to detect only the bicistronic CAR product. Additionally, the authors’ assay gave accurate, precise and reproducible CAR T-cell VCN measurements across qPCR, ndPCR and ddPCR modalities.ConclusionsThe authors demonstrate that dPCR strategies can be utilized for absolute quantification of CAR transgenes and VCN measurements, with improved test–retest reliability, and that specific assays can be developed for detection of unique constructs.  相似文献   

6.
随着分子生物学技术的不断发展和需求的多样化,用于核酸检测的各种PCR衍生技术应运而生。数字PCR是一种单分子水平的大规模分区扩增定量核酸检测技术。该技术以微腔室/微孔或微滴作为PCR反应器,无需校准物和绘制标准曲线即可实现对样品初始浓度的绝对定量,具有高灵敏度、高特异性和高精确度的特点。本文详细介绍了数字PCR的技术发展史、作用原理以及仪器平台类型,系统阐述了数字PCR在转基因检测、疾病诊断、环境及食品监管等方面的应用概况,并对该技术的应用前景进行了展望,以期对未来数字PCR的开发利用提供参考。  相似文献   

7.
ABSTRACT: BACKGROUND: Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. RESULTS: Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of initial target concentration. Model 1 was found to be slightly more robust than model 2 giving better estimates of initial target concentration when estimation of parameters was done for qPCR curves with very different initial target concentration. Both models may be used to estimate the initial absolute concentration of target sequence when a standard curve is not available. CONCLUSIONS: It is argued that the kinetic approach to modeling and interpreting quantitative PCR data has the potential to give more precise estimates of the true initial target concentrations than other methods currently used for analysis of qPCR data. The two models presented here give a unified model of the qPCR process in that they explain the shape of the qPCR curve for a wide variety of initial target concentrations.  相似文献   

8.
The efficient use of digital PCR (dPCR) for precision copy number analysis requires high concentrations of target molecules that may be difficult or impossible to obtain from clinical samples. To solve this problem we present a strategy, called Multiplex Template Sampling (MTS), that effectively increases template concentrations by detecting multiple regions of fragmented target molecules. Three alternative assay approaches are presented for implementing MTS analysis of chromosome 21, providing a 10-fold concentration enhancement while preserving assay precision.  相似文献   

9.
Total DNA from sediment samples was isolated by a direct lysis technique. Purified DNA was used as template either undiluted or diluted 1 : 10 prior to polymerase chain reaction (PCR) amplification of 16S rRNA genes. Full-length inserts were analysed for restriction fragment length polymorphisms (RFLP) with the enzyme Cfo1, and the resulting distribution and abundance of RFLP patterns compared between the undiluted and diluted PCR reactions. Results indicate that for low PCR template concentrations, in the range from a few picograms to tens of picograms DNA, proportional representation of specific RFLP types was not reproducible upon template dilution, confirming that PCR amplification of 16S rDNA cannot be used directly to infer microbial abundance. In particular, only 15–24% of the RFLP types recovered from a sample were present in both the undiluted and diluted extracts. We propose that very low template concentrations in the PCR generate random fluctuations in priming efficiency, which led to the contrast in the RFLP types observed in the libraries from the undiluted and diluted extracts.  相似文献   

10.
Quantitation of targets for PCR by use of limiting dilution.   总被引:6,自引:0,他引:6  
We describe a general method to quantitate the total number of initial targets present in a sample using limiting dilution, PCR and Poisson statistics. The DNA target for the PCR was the rearranged immunoglobulin heavy chain (IgH) gene derived from a leukemic clone that was quantitated against a background of excess rearranged IgH genes from normal lymphocytes. The PCR was optimized to provide an all-or-none end point at very low DNA target numbers. PCR amplification of the N-ras gene was used as an internal control to quantitate the number of potentially amplifiable genomes present in a sample and hence to measure the extent of DNA degradation. A two-stage PCR was necessary owing to competition between leukemic and non-leukemic templates. Study of eight leukemic samples showed that approximately two potentially amplifiable leukemic IgH targets could be detected in the presence of 160,000 competing non-leukemic genomes. The method presented quantitates the total number of initial DNA targets present in a sample, unlike most other quantitation methods that quantitate PCR products. It has wide application, because it is technically simple, does not require radioactivity, addresses the problem of excess competing targets and estimates the extent of DNA degradation in a sample.  相似文献   

11.
An environmental DNA (eDNA) analysis method has been recently developed to estimate the distribution of aquatic animals by quantifying the number of target DNA copies with quantitative real-time PCR (qPCR). A new quantitative PCR technology, droplet digital PCR (ddPCR), partitions PCR reactions into thousands of droplets and detects the amplification in each droplet, thereby allowing direct quantification of target DNA. We evaluated the quantification accuracy of qPCR and ddPCR to estimate species abundance and biomass by using eDNA in mesocosm experiments involving different numbers of common carp. We found that ddPCR quantified the concentration of carp eDNA along with carp abundance and biomass more accurately than qPCR, especially at low eDNA concentrations. In addition, errors in the analysis were smaller in ddPCR than in qPCR. Thus, ddPCR is better suited to measure eDNA concentration in water, and it provides more accurate results for the abundance and biomass of the target species than qPCR. We also found that the relationship between carp abundance and eDNA concentration was stronger than that between biomass and eDNA by using both ddPCR and qPCR; this suggests that abundance can be better estimated by the analysis of eDNA for species with fewer variations in body mass.  相似文献   

12.
13.

Background

DNA methylation is an important epigenetic mechanism in several human diseases, most notably cancer. The quantitative analysis of DNA methylation patterns has the potential to serve as diagnostic and prognostic biomarkers, however, there is currently a lack of consensus regarding the optimal methodologies to quantify methylation status. To address this issue we compared five analytical methods: (i) MethyLight qPCR, (ii) MethyLight digital PCR (dPCR), methylation-sensitive and -dependent restriction enzyme (MSRE/MDRE) digestion followed by (iii) qPCR or (iv) dPCR, and (v) bisulfite amplicon next generation sequencing (NGS). The techniques were evaluated for linearity, accuracy and precision.

Results

MethyLight qPCR displayed the best linearity across the range of tested samples. Observed methylation measured by MethyLight- and MSRE/MDRE-qPCR and -dPCR were not significantly different to expected values whilst bisulfite amplicon NGS analysis over-estimated methylation content. Bisulfite amplicon NGS showed good precision, whilst the lower precision of qPCR and dPCR analysis precluded discrimination of differences of < 25% in methylation status. A novel dPCR MethyLight assay is also described as a potential method for absolute quantification that simultaneously measures both sense and antisense DNA strands following bisulfite treatment.

Conclusions

Our findings comprise a comprehensive benchmark for the quantitative accuracy of key methods for methylation analysis and demonstrate their applicability to the quantification of circulating tumour DNA biomarkers by using sample concentrations that are representative of typical clinical isolates.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1174) contains supplementary material, which is available to authorized users.  相似文献   

14.
Quantitative accuracy based on the fluorescent intensity of bands in a denaturing gradient gel electrophoresis (DGGE) profile of polymerase chain reaction (PCR)‐amplified 16S rRNA gene fragments was evaluated for the molecular inference of dominant populations using a cyanobacterial primer pair in a picocyanobacterial community. A serial dilution technique of the template prior to PCR of extracted nucleic acids allowed for elimination of minor strains (less than 10% of the whole cell number) using a cell mixture of three known cultured Synechococcus species with different ratios. When the most abundant strain among the three accounted for more than 80% of the cells, the single band derived from the most abundant one was detected exclusively after the template dilution. In the case of two or three strains evenly distributed in the sample, all strains remained as bands after template dilution. The technique used in the present study was also applied to lake water samples collected from depths of 1 and 5 m on 27 August 1999. The same dominant Synechococcus population was detected in both samples. Thus, the template‐dilution technique prior to PCR is useful to determine dominant picocyanobacterial populations in the DGGE profiling.  相似文献   

15.

Background

Quantitative PCR (qPCR) is a workhorse laboratory technique for measuring the concentration of a target DNA sequence with high accuracy over a wide dynamic range. The gold standard method for estimating DNA concentrations via qPCR is quantification cycle () standard curve quantification, which requires the time- and labor-intensive construction of a standard curve. In theory, the shape of a qPCR data curve can be used to directly quantify DNA concentration by fitting a model to data; however, current empirical model-based quantification methods are not as reliable as standard curve quantification.

Principal Findings

We have developed a two-parameter mass action kinetic model of PCR (MAK2) that can be fitted to qPCR data in order to quantify target concentration from a single qPCR assay. To compare the accuracy of MAK2-fitting to other qPCR quantification methods, we have applied quantification methods to qPCR dilution series data generated in three independent laboratories using different target sequences. Quantification accuracy was assessed by analyzing the reliability of concentration predictions for targets at known concentrations. Our results indicate that quantification by MAK2-fitting is as reliable as standard curve quantification for a variety of DNA targets and a wide range of concentrations.

Significance

We anticipate that MAK2 quantification will have a profound effect on the way qPCR experiments are designed and analyzed. In particular, MAK2 enables accurate quantification of portable qPCR assays with limited sample throughput, where construction of a standard curve is impractical.  相似文献   

16.
Quantitative real-time PCR (qPCR) has become a gold standard for the quantification of nucleic acids and microorganism abundances, in which plasmid DNA carrying the target genes are most commonly used as the standard. A recent study showed that supercoiled circular confirmation of DNA appeared to suppress PCR amplification. However, to what extent to which different structural types of DNA (circular versus linear) used as the standard may affect the quantification accuracy has not been evaluated. In this study, we quantitatively compared qPCR accuracies based on circular plasmid (mostly in supercoiled form) and linear DNA standards (linearized plasmid DNA or PCR amplicons), using proliferating cell nuclear gene (pcna), the ubiquitous eukaryotic gene, in five marine microalgae as a model gene. We observed that PCR using circular plasmids as template gave 2.65-4.38 more of the threshold cycle number than did equimolar linear standards. While the documented genome sequence of the diatom Thalassiosira pseudonana shows a single copy of pcna, qPCR using the circular plasmid as standard yielded an estimate of 7.77 copies of pcna per genome whereas that using the linear standard gave 1.02 copies per genome. We conclude that circular plasmid DNA is unsuitable as a standard, and linear DNA should be used instead, in absolute qPCR. The serious overestimation by the circular plasmid standard is likely due to the undetected lower efficiency of its amplification in the early stage of PCR when the supercoiled plasmid is the dominant template.  相似文献   

17.
Effect of highly fragmented DNA on PCR.   总被引:2,自引:1,他引:2       下载免费PDF全文
We characterized the behavior of polymerase chain reactions (PCR) using degraded DNA as a template. We first demonstrated that fragments larger than the initial template fragments can be amplified if overlapping fragments are allowed to anneal and extend prior to routine PCR. Amplification products increase when degraded genomic DNA is pretreated by polymerization in the absence of specific primers. Secondly, we measured nucleotide uptake as a function of template DNA degradation. dNTP incorporation initially increases with increasing DNA fragmentation and then declines when the DNA becomes highly degraded. We demonstrated that dNTP uptake continues for >10 polymerization cycles and is affected by the quality and quantity of template DNA and by the amount of substrate dNTP. These results suggest that although reconstruction of degraded DNA may allow amplification of large fragments, reconstructive polymerization and amplification polymerization may compete. This was confirmed in PCR where the addition of degraded DNA reduced the resultant product. Because terminal deoxynucleotidyl transferase activity of Taq polymerase may inhibit 3' annealing and restrict the length of template reconstruction, we suggest modified PCR techniques which separate reconstructive and amplification polymerization reactions.  相似文献   

18.
Cultured strains and individually isolated dinoflagellate cells from field samples were preserved in different fixatives to find a method of cell preservation that could provide DNA template in PCR reactions and preserve cell morphology for microscopic studies. Lugol’s solution and various ethanol concentrations all showed shortcomings, whereas an initial formalin preservation step followed by storage in 100% methanol fulfilled both demands. Cells could be stored up to 1 year and still provide functional DNA template for positive PCR reactions. The amplified fragment was approximately 700 bp of the D1/D2 region of the LSU rDNA, which is to our knowledge significantly longer than the low-molecular-weight DNA typically reported from formalin preserved samples. By cloning and sequencing the PCR product and subsequently aligning the sequences with previously sequenced fragments of the same or similar species, we confirmed that no base pair alteration had taken place during the time that the cells were fixed and frozen. In another experiment it was demonstrated that the growth phase of cultured Alexandrium minutum did not have any influence on the result of PCR reactions. This was true for extracted DNA from cultures and for direct PCR with a small number of disrupted cells. Phenol/chlorophorm/isoamylalcohol extraction proved to be an unpredictable method for DNA extraction, whereas direct PCR on isolated cells was more reliable. Extracted DNA purified with a commercial DNA cleaning kit always rendered a positive PCR. The environmental condition for cells to be used as DNA template in PCR is discussed.  相似文献   

19.
This paper assesses the quantitative resolution of qPCR using copy number variation (CNV) as a paradigm. An error model is developed for real-time qPCR data showing how the precision of CNV determination varies with the number of replicates. Using samples with varying numbers of X chromosomes, experimental data demonstrates that real-time qPCR can readily distinguish four copes from five copies, which corresponds to a 1.25-fold difference in relative quantity. Digital PCR is considered as an alternative form of qPCR. For digital PCR, an error model is shown that relates the precision of CNV determination to the number of reaction chambers. The quantitative capability of digital PCR is illustrated with an experiment distinguishing four and five copies of the human gene MRGPRX1. For either real-time qPCR or digital PCR, practical application of these models to achieve enhanced quantitative resolution requires use of a high throughput PCR platform that can simultaneously perform thousands of reactions. Comparing the two methods, real-time qPCR has the advantage of throughput and digital PCR has the advantage of simplicity in terms of the assumptions made for data analysis.  相似文献   

20.

Background

Uveal melanoma (UM) development and progression is correlated with specific molecular changes. Recurrent mutations in GNAQ and GNA11 initiate UM development while tumour progression is correlated with monosomy of chromosome 3 and gain of chromosome 8q. Hence, molecular analysis of UM is useful for diagnosis and prognosis. The aim of this study is to evaluate the use of digital PCR (dPCR) for molecular analysis of UM.

Methods

A series of 66 UM was analysed with dPCR for three hotspot mutations in GNAQ/GNA11 with mutation specific probes. The status of chromosomes 3 and 8 were analysed with genomic probes. The results of dPCR analysis were cross-validated with Sanger sequencing, SNP array analysis, and karyotyping.

Results

Using dPCR, we were able to reconstitute the molecular profile of 66 enucleated UM. With digital PCR, GNAQ/GNA11 mutations were detected in 60 of the 66 UM. Sanger sequencing revealed three rare variants, and, combined, these assays revealed GNAQ/GNA11 mutations in 95% of UM. Monosomy 3 was present in 43 and chromosome 8 aberrations in 52 of the 66 UM. Survival analysis showed that increasing 8q copy numbers were positively correlated with metastasis risk.

Conclusion

Molecular analysis with dPCR is fast and sensitive. Just like the recurrent genomic aberrations of chromosome 3 and 8, hotspot mutations in GNAQ and GNA11 are effectively detected in heterogeneous samples. Increased sensitivity contributes to the number of mutations and chromosomal aberrations detected. Moreover, quantification of copy number with dPCR validated 8q dosage as a sensitive prognostic tool in UM, of which implementation in disease prediction models will further improve prognostication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号