首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
The release of [3H]noradrenaline from rat hippocampal synaptosomes by 25 mM K+ and 5 μM veratridine, but not by the Ca2+ ionophore A23187 was depressed by baclofen. This depression was reversed by 8-Bromo-cAMP. This action of baclofen was stereospecific and mimicked both that of GABA in the presence of bicuculline and that of clonidine. The α2-adrenoceptor antagonists yohimbine and Wy25309 antagonised the action of clonidine and baclofen but not that of GABA. Specific binding of [3H]clonidine was displaced by Wy25309 and baclofen, but not by GABA. Specific binding of [3H]GABA in the presence of Ca2+ was displaced by baclofen but not by Wy25309. It is concluded that baclofen is not a specific agonist at GABAB receptors in the brain.  相似文献   

2.
The action of γ-aminobutyric acid (GABA) and related compounds on the spontaneous release of newly synthesized [3H]5-hydroxytryptamine ([3H]5-HT) was studied in the suprachiasmatic area (SCA) using a superfusion system. GABA (10 μM) increased [3H]5-HT release from SCA by up to 190%. Bicuculline or picrotoxin (10 μM) failed to inhibit the stimulatory effect of GABA. Muscimol (10 μM), a GABAA agonist, was ineffective, however β-p-chlorophenyl GABA, R(−)baclofen, enhanced over 200% the release of the indoleamine; this latter effect was stereospecific. RS baclofen was twice less potent than the R(−)isomer in increasing the [3H]5-HT release. S(+)baclofen failed to affect the release of the indoleamine, whereas it attenuated the effect of its enantiomer. The effect of R(−)baclofen was Ca2+ dependent and was abolished by tetrodotoxin (TTX).Taken together these results suggest that in the SCA, [3H]5-HT release is facilitated by the stimulation of GABAB receptors. The possible localization of these receptors is discussed in the light of morphological data recently reported by Bosler et al. (1985) and results obtained after TTX application.  相似文献   

3.
Gabapentin, a novel anticonvulsant and analgesic, is a -aminobutyric acid (GABA) analogue but was shown initially to have little affinity at GABAA or GABAB receptors. It was recently reported to be a selective agonist at GABAB receptors containing GABAB1a-GABAB2 heterodimers, although several subsequent studies disproved that conclusion. In the present study, we examined whether gabapentin is an agonist at native GABAB receptors using a rat model of postoperative pain in vivo and periaqueductal gray (PAG) slices in vitro; PAG contains GABAB receptors, and their activation results in antinociception. An intrathecal injection of gabapentin or baclofen, a GABAB receptor agonist, induced antiallodynia in this postoperative pain model. Intrathecal injection of GABAB receptor antagonists CGP 35348 and CGP 55845 antagonized baclofen- but not gabapentin-induced antiallodynia. In ventrolateral PAG neurons, baclofen activated G-protein-coupled inwardly rectifying K+ (GIRK) channels in a manner blocked by CGP 35348 or CGP 55845. However, gabapentin displayed no effect on the membrane current. In neurons unaffected by gabapentin, baclofen activated GIRK channels through GABAB receptors. It is concluded that gabapentin is not an agonist at GABAB receptors that are functional in baclofeninduced antiallodynia in the postoperative pain model in vivo and in GIRK channel activation in ventrolateral PAG neurons in vitro.  相似文献   

4.
Summary. GABA is synthesized within GABA terminals through a highly compartmentalized process in which glial-derived glutamine is a major precursor and its release is modulated by GABAB autoreceptors. The aim of this work was to ascertain whether or not GABA synthesis and release are coupled in the rat brain through a GABAB autoreceptor-mediated modulation. It was found that (−)baclofen (30 μM) reduces the K+ stimulated release of [3H]GABA in synaptosomes and prisms (10 μM) from cerebral cortex, while at the same concentrations (−)baclofen failed to modify the synthesis of [3H]GABA from [3H]glutamine in cortical and hypothalamic slices, prisms and in cortical synaptosomes. In this latter preparation, identical results were observed when (−)baclofen was added to Krebs-Tris media, containing 5 or 15 mM K+ concentration. In agreement with these latter results, glutamic acid decarboxylase (GAD) activity from cortical and hypothalamic prisms was not affected by 1–100 μM (−)baclofen. Similar results on GABA synthesis were also observed when 1–100 μM 3-aminopropil(methyl)-phosphinic acid or GABA was used instead of (−)baclofen to stimulate GABAB autoreceptors. [3H]GABA release, [3H]GABA synthesis from [3H]glutamine and GAD activity were also insensitive to the action of the GABAB antagonist CGP 52432 (10–100 μM). Likewise, muscimol (0.3–100 μM) did not affect GABA synthesis. Our results indicate that unlike GABA release, GABA synthesis is not modulated by GABAB autoreceptors. Received August 31, 1999 Accepted September 20, 1999  相似文献   

5.
Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a physiological role for GABABR2 in the repair process of lung damage. GABABR2 agonists may play a potential therapeutic role in ALI.  相似文献   

6.
Primary lens epithelial cell (LEC) cultures derived from newborn (P0) and one-month-old (P30) mouse lenses were used to study GABA (gamma-aminobutyric acid) signaling expression and its effect on the intracellular Ca2+ ([Ca2+]i) level. We have found that these cultures express specific cellular markers for lens epithelial and fiber cells, all components of the functional GABA signaling pathway and GABA, thus recapitulating the developmental program of the ocular lens. Activation of both GABA-A and GABA-B receptors (GABAAR and GABABR) with the specific agonists muscimol and baclofen, respectively induces [Ca2+]i transients that could be blocked by the specific antagonists bicuculline and CGP55845 and were dependent on extracellular Ca2+. Bicuculline did not change the GABA-evoked Ca2+ responses in Ca2-containing buffers, but suppressed them significantly in Ca2+-free buffers suggesting the two receptors couple to convergent Ca2+ mobilization mechanisms with different extracellular Ca2+ sensitivity. Prolonged activation of GABABR induced wave propagation of the Ca2+ signal and persistent oscillations. The number of cells reacting to GABA or GABA + bicuculline in P30 mouse LEC cultures expressing predominantly the synaptic type GABAAR did not differ significantly from the number of reacting cells in P0 mouse LEC cultures. The GABA-induced Ca2+ transients in P30 (but not P0) mouse LEC could be entirely suppressed by co-application of bicuculline and CGP55845. The GABA-mediated Ca2+ signaling may be involved in a variety of Ca2+-dependent cellular processes during lens growth and epithelial cell differentiation.  相似文献   

7.
In the adult central nervous system, GABAergic synaptic inhibition is known to play a crucial role in preventing the spread of excitatory glutamatergic activity. This inhibition is achieved by a membrane hyperpolarization through the activation of postsynaptic γ-aminobutyric acidA (GABAA) and GABAB receptors. In addition, GABA also depress transmitter release acting through presynaptic GABAB receptors. Despite the wealth of data regarding the role of GABA in regulating the degree of synchronous activity in the adult, little is known about GABA transmission during early stages of development. In the following we report that GABA mediates most of the excitatory drive at early stages of development in the hippocampal CA3 region. Activation of GABAA receptors induces a depolarization and excitation of immature CA3 pyramidal neurons and increases intracellular Ca2+ ([Ca2+]i) during the first postnatal week of life. During the same developmental period, the postsynaptic GABAB-mediated inhibition is poorly developed. In contrast, the presynaptic GABAB-mediated inhibition is well developed at birth and plays a crucial role in modulating the postsynaptic activity by depressing transmitter release at early postnatal stages. We have also shown that GABA plays a trophic role in the neuritic outgrowth of cultured hippocampal neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 M THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site.  相似文献   

9.
γ-Hydroxybutyric acid (GHB) is an endogenous compound and a drug used clinically to treat the symptoms of narcolepsy. GHB is known to be an agonist of GABAB receptors with millimolar affinity, but also binds with much higher affinity to another site, known as the GHB receptor. While a body of evidence has shown that GHB does not bind to GABAA receptors widely, recent evidence has suggested that the GHB receptor is in fact on extrasynaptic α4β1δ GABAA receptors, where GHB acts as an agonist with an EC50 of 140 nM. We investigated three neuronal cell types that express a tonic GABAA receptor current mediated by extrasynaptic receptors: ventrobasal (VB) thalamic neurons, dentate gyrus granule cells and striatal medium spiny neurons. Using whole-cell voltage clamp in brain slices, we found no evidence that GHB (10 µM) induced any GABAA receptor mediated current in these cell types, nor that it modulated inhibitory synaptic currents. Furthermore, a high concentration of GHB (3 mM) was able to produce a GABAB receptor mediated current, but did not induce any other currents. These results suggest either that GHB is not a high affinity agonist at native α4β1δ receptors, or that these receptors do not exist in classical areas associated with extrasynaptic currents.  相似文献   

10.
Abstract— The presynaptic regulation of stimulated dopa-mine release from superfused rat striatal synaptosomes by opioids and γ-aminobutyric acid (GABA) was studied. It was found that in addition to dopamine D2 autoreceptors, calcium-dependent K+-stimulated [3H]dopamine release was inhibited through activation of a homogeneous population of k -opioid receptors in view of the potent inhibitory effect of the k -selective agonist U69.593 (EC50 0.2 nM) and its antagonism by norbinaltorphimine. Neither μ-nor δ-selective receptor agonists affected release of [3H]-dopamine. In addition, GABA potently inhibited the evoked [3H]dopamine release (EC50 0.4 nM) through activation of GABAA receptors in view of the GABA-mimicking effect of muscimol, the sensitivity of its inhibitory effect to picro-toxin and bicuculline, and the absence of an effect of the GABAB receptor agonist baclofen. In the presence of a maximally effective concentration of GABA, U69,593 did not induce an additional release-inhibitory effect, indicating that these receptors and the presynaptic D2 receptor are colocalized on the striatal dopaminergic nerve terminals. The excitatory amino acid agonists N-methyl-d -aspartate and kainate, as well as the cholinergic agonist carbachol, stimulated [3H]dopamine release, which was subject to k -opioid receptor-mediated inhibition. In conclusion, striatal dopamine release is under regulatory control of multiple excitatory and inhibitory neurotransmitter by activation of colocalized presynaptic receptors for excitatory amino acids, acetylcholine, dopamine, dynorphins, and GABA within the dopaminergic nerve terminals. Together, these receptors locally control ongoing dopamine neurotransmission.  相似文献   

11.
12.
Neuronal Cav2.1 (P/Q-type), Cav2.2 (N-type), and Cav2.3 (R-type) calcium channels contribute to synaptic transmission and are modulated through G protein–coupled receptor pathways. The analgesic α-conotoxin Vc1.1 acts through γ-aminobutyric acid type B (GABAB) receptors (GABABRs) to inhibit Cav2.2 channels. We investigated GABABR-mediated modulation by Vc1.1, a cyclized form of Vc1.1 (c-Vc1.1), and the GABABR agonist baclofen of human Cav2.1 or Cav2.3 channels heterologously expressed in human embryonic kidney cells. 50 µM baclofen inhibited Cav2.1 and Cav2.3 channel Ba2+ currents by ∼40%, whereas c-Vc1.1 did not affect Cav2.1 but potently inhibited Cav2.3, with a half-maximal inhibitory concentration of ∼300 pM. Depolarizing paired pulses revealed that ∼75% of the baclofen inhibition of Cav2.1 was voltage dependent and could be relieved by strong depolarization. In contrast, baclofen or Vc1.1 inhibition of Cav2.3 channels was solely mediated through voltage-independent pathways that could be disrupted by pertussis toxin, guanosine 5′-[β-thio]diphosphate trilithium salt, or the GABABR antagonist CGP55845. Overexpression of the kinase c-Src significantly increased inhibition of Cav2.3 by c-Vc1.1. Conversely, coexpression of a catalytically inactive double mutant form of c-Src or pretreatment with a phosphorylated pp60c-Src peptide abolished the effect of c-Vc1.1. Site-directed mutational analyses of Cav2.3 demonstrated that tyrosines 1761 and 1765 within exon 37 are critical for inhibition of Cav2.3 by c-Vc1.1 and are involved in baclofen inhibition of these channels. Remarkably, point mutations introducing specific c-Src phosphorylation sites into human Cav2.1 channels conferred c-Vc1.1 sensitivity. Our findings show that Vc1.1 inhibition of Cav2.3, which defines Cav2.3 channels as potential targets for analgesic α-conotoxins, is caused by specific c-Src phosphorylation sites in the C terminus.  相似文献   

13.
《Life sciences》1994,55(12):PL239-PL243
We investigated the effects of muscimol, the GABAA receptor agonist, and baclofen, the GABAB receptor agonist, injected into the third cerebral ventricle on plasma epinephrine (E) and norepinephrine (NE) levels in anesthetized rats. Baclofen (0.4–5 nmol) increased plasma NE levels in a dose dependent manner but did not affect plasma E levels. Muscimol (2.5 nmol) affected neither plasma E nor NE levels. Concomitant injection of muscimol (2.5 nmol) with baclofen (5 nmol) attenuated the baclofen (5 nmol)-induced NE secretion. These findings suggest that activation of GABAB receptors in the central nervous system (CNS) stimulates the sympathetic nervous system but not the adrenal medullary response. In contrast, activation of GABAA receptors in the CNS affects neither the sympathetic nervous system nor the adrenal medullary response, but inhibits the sympathetic neural activity induced by activation of GABAB receptors in anesthetized rats.  相似文献   

14.
Pharmacological and biochemical characteristics of the partially purified -aminobutyric acid (GABA)B receptor using baclofen affinity column chromatography have been examined. The Scatchard analysis of [3H]GABA binding to the purified GABAB receptor showed a linear relationship and the KD and Bmax values were 60 nM and 118 pmol/mg of protein, respectively. Although GTP and Mg2+ did not affect on the GABAB receptor binding, Ca2+ significantly increased [3H]GABA binding to the purified GABAB receptor in a dose-dependent manner and showed its maximum effect at 2 mM. The enhancement of the binding by Ca2+ was found to be due to the increase of Bmax by the Scatchard analysis. The treatments with pronase and trypsin significantly decreased the binding of [3H]GABA, but phospholipase A2 had no significant effect on the binding. In addition, treatment with glycosidases such as glycopeptidase A and -galactosidase significantly decreased the binding of [3H]GABA to the purified GABAB receptor. These results suggest that purification of the solubilized GABAB receptor by the affinity column chromatography may result in the functional uncoupling of GABAB receptor with GTP-binding protein. Furthermore, the present results suggest that cerebral GABAB receptor may be a glycoprotein and membrane phospholipids susceptible to phospholipase A2 treatment may not be involved in the exhibition of the binding activity.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

15.
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via ionotropic (GABAA and GABAC) and metabotropic (GABAB) receptors. The GABAB receptor is a dimer composed of R1 and R2 components. In addition to their location on neurons, GABA and functional GABAB receptors also have been detected in some peripheral tissues. In the present study, we combined immunohistochemistry, immunoblot and tension recording to determine if the human fallopian tube express glutamic acid decarboxylase (GAD65/67), two isoforms for synthesis of GABA and functional GABAB receptors. Immunoblots showed that the human fallopian tube tissue contained GABABR1 protein which was localized in the epithelial cells and smooth muscle cells by immunohistochemistry. In addition, epithelial cells also expressed GAD65/67. Tension recording found that both GABA and baclofen, a GABAB receptor agonist increased the spontaneous activity of human fallopian tube. The expressions of GABABR and GAD65/67 were significantly upregulated in the ectopic pregnancy group than in the intrauterine pregnancy group. We conclude that the human fallopian tube is capable of synthesizing GABA and expresses functionally active GABAB receptors. An upregulation of GABA synthesis and corresponding GABAB receptors may involve in ectopic pregnancy.  相似文献   

16.
Abstract: Striatal cholinergic interneurons have been shown to receive input from Striatal γ-aminobutyric acid (GABA)-containing cell elements. GABA is known to act on two different types of receptors, the GABAA and the GABA6 receptor. Using in vivo microdialysis, we have studied the effect of intrastriatal application of the GABAA-selective compounds muscimol and bicuculline and the GA- BAB-selective compounds baclofen and 2-hydroxysaclofen, agonists and antagonists, respectively, at GABA receptors, on the output of Striatal acetylcholine (ACh). Intrastriatal infusion of 1 and 10 μmol/L concentrations of the GABAA antagonist bicuculline resulted in a significant increase in Striatal ACh output, whereas infusion of 1 and 10 /μmol/L concentrations of the GABAA agonist muscimol significantly decreased the output of Striatal ACh. Both compounds were ineffective in changing the output of Striatal ACh at lower concentrations. Infusion of concentrations up to 100 μmol/L of the GABAB-selective antagonist 2-hydroxy-saclofen failed to affect Striatal ACh output, whereas infusion of 10 and 100 μmol/L baclofen, but not 0.1 and 1 μmol/L baclofen, significantly decreased the output of Striatal ACh. Thus, agonist-stimulation of GABAA and GABAB receptors decreases the output of striatal ACh in a dose-dependent fashion, whereas the GABAergic system appears to inhibit tonically the output of striatal ACh via GABAA receptors, but not via GABAB receptors. We hypothesize that although GABAA mediated regulation of striatal ACh occurs via GABA receptors on the cholinergic neuron, the GABAB mediated effects may be explained by presynaptic inhibition of the glutamatergic input of the striatal cholinergic neuron.  相似文献   

17.
18.

Background

Chemical stimulation of white adipose tissue (WAT) induces adipose afferent reflex (AAR), and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN) is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA) in PVN in regulating the AAR.

Methodology/Principal Findings

Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT) afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.

Conclusions

Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.  相似文献   

19.
Burst-firing in thalamic neurons is known to play a key role in mediating thalamocortical (TC) oscillations that are associated with non-REM sleep and some types of epileptic seizure. Within the TC system the primary output of GABAergic neurons in the reticular thalamic nucleus (RTN) is thought to induce the de-inactivation of T-type calcium channels in thalamic relay (TR) neurons, promoting burst-firing drive to the cortex and the propagation of TC network activity. However, RTN neurons also project back onto other neurons within the RTN. The role of this putative negative feedback upon the RTN itself is less well understood, although is hypothesized to induce de-synchronization of RTN neuron firing leading to the suppression of TC oscillations. Here we tested two hypotheses concerning possible mechanisms underlying TC oscillation modulation. Firstly, we assessed the burst-firing behavior of RTN neurons in response to GABAB receptor activation using acute brain slices. The selective GABAB receptor agonist baclofen was found to induce suppression of burst-firing concurrent with effects on membrane input resistance. Secondly, RTN neurons express CaV3.2 and CaV3.3 T-type calcium channel isoforms known to contribute toward TC burst-firing and we examined the modulation of these channels by GABAB receptor activation. Utilizing exogenously expressed T-type channels we assessed whether GABAB receptor activation could directly alter T-type calcium channel properties. Overall, GABAB receptor activation had only modest effects on CaV3.2 and CaV3.3 isoforms. The only effect that could be predicted to suppress burst-firing was a hyperpolarized shift in the voltage-dependence of inactivation, potentially causing lower channel availability at membrane potentials critical for burst-firing. Conversely, other effects observed such as a hyperpolarized shift in the voltage-dependence of activation of both CaV3.2 and CaV3.3 as well as increased time constant of activation of the CaV3.3 isoform would be expected to enhance burst-firing. Together, we hypothesize that GABAB receptor activation mediates multiple downstream effectors that combined act to suppress burst-firing within the RTN. It appears unlikely that direct GABAB receptor-mediated modulation of T-type calcium channels is the major mechanistic contributor to this suppression.  相似文献   

20.
Midbrain slices containing the dorsal and medial raphe nuclei were prepared from rat brain in order to study serotonergic-GABAergic interaction. The slices were loaded with either [3H] serotonin or [3H]GABA, superfused and the electrically induced efflux of radioactivity was determined. The GABAA receptor agonist muscimol (3 to 30 M) and the GABAB receptor agonist baclofen (30 and 100 M) inhibited [3H]serotonin and [3H]GABA release. These effects of muscimol were reversed by the GABAA antagonists bicuculline (100 M). The GABAB antagonist phaclofen (100 M) also antagonized the baclofen-induced inhibition of [3H]serotonin and [3H]GABA release. Phaclofen by itself increased [3H]serotonin release but it did not alter [3H]GABA overflow. Muscimol (10 M) and baclofen (100 M) also inhibited [3H]serotonin release after depletion of GABAergic neurons by isoniazid pretreatment. These findings indicate the presence of postsynaptic GABAA and GABAB receptors located on serotonergic neurons. The 5-HT1A receptor agonist 8-OH-DPAT (0.01 to 1 M) and the 5-HT1B receptor agonist CGS-12066A (0.01 to 1 M) inhibited the electrically stimulated [3H]serotonin and [3H]GABA release. The 5-HT1A antagonist WAY-100135 (1 M) was without effect on [3H]serotonin and [3H]GABA efflux by itself but it reversed the 8-OH-DPAT-induced transmitter release inhibition. During KCl (22 mM)-induced depolarization, tetrodotoxin (1 M) did not alter the inhibitory effect of CGS-12066A (1 M) on [3H]GABA release, it did blocked, however, the ability of 8-OH-DPAT (1 M) to reduce [3H]GABA efflux. After depletion of raphe serotonin neurons by p-chlorophenylalanine pretreatment, CGS-12066A (1 M) still inhibited [3H]GABA release whereas in serotonin-depleted slices, 8-OH-DPAT (1 M) was without effect on the release. We conclude that reciprocal influence exists between serotonergic projection neurons and the GABAergic interneurons or afferents in the raphe nuclei and these interactions may be mediated by 5-HT1A/B and GABAA/B receptors. Both synaptic and non-synaptic neurotransmission may be operative in the 5-HTergic-GABAergic reciprocal interaction which may serve as a local tuning in the neural connection between cerebral cortex and midbrain raphe nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号