首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.  相似文献   

2.
《Genomics》2020,112(6):4089-4099
The pathogenesis-related protein 1 (PR-1) gene family play important roles in the plant metabolism in response to biotic and abiotic stresses. The present study aimed genome-wide identification and bioinformatics analyses of PR-1 genes in tomato (Solanum lycopersicum L.). The analyses resulted in the identification of 13 novel SlPR-1 genes, each of which produce a protein belonging to the CAP superfamily (PF00188). The KEGG annotation analyses revealed that the SlPR-1 proteins functioned in the environmental information processing (09130). The expression patterns of the PR-1 genes and some stress-related physiological parameters were investigated in Fusarium oxysporum sensitive and tolerant tomato varieties under drought stress. The drought stress leaded upregulation of all SlPR-1 genes, reaching up to 50 folds. The results indicate that the SlPR-1 genes play active roles in response to drought. This is the first study exhibiting the expression profiles of SlPR-1 genes under an abiotic stress, drought, in tomato.  相似文献   

3.
4.
5.
In Vitro Cellular & Developmental Biology - Plant - The OsRGLP1 gene was overexpressed under the control of CaMV 35S promoter in tomato (Solanum lycopersicum L.) plants using...  相似文献   

6.
Potassium transporters belonging to the KT/HAK/KUP family play an important role in plant growth, development, mineral nutrition, and stress adaptation. In this study, we identified 19 KT/HAK/KUP family genes in tomato, distributed on 10 chromosomes, by using bioinformatics methods. A complete overview of the KT/HAK/KUP (SlHAK) genes in tomato is presented, including chromosome location, phylogeny, gene structure, and evolution pattern. Phylogenetic analysis of 19 SlHAK proteins suggested that group IV of the KT/HAK/KUP family is absent in the tomato genome. In addition, five pairs of segmental duplicated paralogs and two pairs of tandem duplicated paralogs were identified in the tomato KT/HAK/KUP family. This suggests that segmental duplication is predominant for the expansion of the SlHAK genes. Calculation of the approximate dates of duplication events using the synonymous substitution rate indicated that the segmental duplication of the KT/HAK/KUP genes in tomato originated 35.89–62.77 million years ago. Adaptive evolution analysis showed that purifying selection contributed to the evolution of segmental duplicated pairs. Furthermore, Tajima’s relative rate test indicated that all segmental duplicated pairs evolved at similar rates. As a first step toward a genome-wide analysis of the KT/HAK/KUP gene family in tomato, our results provide valuable information for understanding the function and evolution of the KT/HAK/KUP gene family in tomato and other species.  相似文献   

7.
Lu Y  Ouyang B  Zhang J  Wang T  Lu C  Han Q  Zhao S  Ye Z  Li H 《Gene》2012,499(1):14-24
Annexins have been suggested to play pivotal roles in stress resistance and plant development. However, related studies on fruit-bearing plants, especially on fruit development, are very limited. In the present study, we provide a comprehensive overview of the annexin family in tomato, describing the gene structure, promoter cis-regulatory elements, organ expression profile, and gene expression patterns under hormone and stress treatments. Bioinformatic analysis revealed that the nine tomato annexins were structurally different from their animal counterparts, but highly conserved annexin domains were still found in most of them. Cis-regulatory element prediction showed that there were important elements in the 2kb upstream promoter regions, including stress- and hormone-responsive-related elements. The expression patterns of these genes were investigated, and the results revealed that they were regulated under developmental processes and environmental stimuli. Among them, AnnSl1.1 and AnnSl2 were highly expressed in most of the tested organs. Genes preferentially or specifically expressed in organs, such as stigma or ovary (AnnSl6), stamen (AnnSl8), and fruit pericarp (AnnSl1.2 and AnnSl9), were identified. Some annexin genes were induced by plant hormones including abscisic acid (AnnSl3, AnnSl6, AnnSl8, and AnnSl9) and gibberellic acid (AnnSl1.1, AnnSl1.2, AnnSl4, and AnnSl7). Most of these annexin genes were induced by salt, drought, wounding, and heat or cold stresses. The present study provides significant information for understanding the diverse roles of annexins in tomato growth and development.  相似文献   

8.
Kurt  Firat  Kurt  Baris  Filiz  Ertugrul  Yildiz  Kubra  Akbudak  M. Aydın 《Biometals》2022,35(5):875-887
BioMetals - Mitochondrial iron transporter (MIT) genes are essential for mitochondrial acquisition/import of iron and vital to proper functioning of mitochondria. Unlike other organisms, research...  相似文献   

9.
Heat stress has been defined as the rise of temperature for a period of time higher than a threshold level, thereby permanently affecting the plant growth and development. Day or night temperature is considered as the major limiting factor for plant growth. Earlier studies reported that night temperature is an important factor in the heat reaction of the plants. Tomato cultivars capable of setting viable fruits under night temperatures above 21 °C are considered as heat-tolerant cultivars. The development of breeding objectives is generally summarized in four points: (a) cultivars with higher yield, (b) disease resistant varieties in the 1970s, (c) long shelf-life in 1980s, and (d) nutritive and taste quality during 1990s. Some unique varieties like the dwarf “Micro-Tom”, and the first transgenic tomato (FlavrSavr) were developed through breeding; they were distributed late in the 1980s.High temperature significantly affects seed, pollen viability and root expansion. Researchers have employed different parameters to evaluate the tolerance to heat stress, including membrane thermo stability, floral characteristics (Stigma exertion and antheridia cone splitting), flower number, and fruit yield per plant. Reports on pollen viability and fruit set/plant under heat stress by comparing the pollen growth and tube development in heat-treated and non-heat-stressed conditions are available in literature. The electrical conductivity (EC) have been used to evaluate the tolerance of some tomato cultivars in vitro under heat stress conditions as an indication of cell damage due to electrolyte leakage; they classified the cultivars into three groups: (a) heat tolerant, (b) moderately heat tolerant, and (c) heat sensitive.It is important to determine the range in genetic diversity for heat tolerance in tomatoes. Heat stress experiments under field conditions offer breeders information to identify the potentially heat tolerant germplasm.  相似文献   

10.
Sharma  Deepak  Koul  Archana  Kaul  Sanjana  Dhar  Manoj K. 《Protoplasma》2020,257(4):1093-1108
Protoplasma - Tomato is an excellent model for studying fruit development, ripening, and other secondary metabolic pathways such as carotenoid biosynthetic pathway, flavonoid pathway, and many...  相似文献   

11.
12.
Umapathi  M.  Kalarani  M. K.  Srinivasan  S.  Kalaiselvi  P. 《Biometals》2022,35(5):1113-1132
BioMetals - The rising concentration of cadmium (Cd) builds a harmful effect on human and plant health associated with food chain contagion. Melatonin (MT) is an indole compound. Hence, the...  相似文献   

13.
The present study assessed the effectiveness of gamma radiation in inducing favorable genetic variability in tomato (Solanum lycopersicum L.). An experiment was conducted in a randomized complete block design to produce M1 generation. Significant differences were observed among the genotypes as well as between the treatments at individual plant level based on observed traits (seed germination percentage, seedling survival, plant height, number of flower clusters plant?1, number of flowers and fruits plant?1). All observed characters in the mutagenized population were adversely affected with increasing radiation dose. Results identified 450 Gy as the most damaging radiation dose followed by 300 Gy and 150 Gy. Moreover, 300 Gy treatment was identified as lethal dose (LD50) as it caused a 50% germination inhibition in almost all the evaluated genotypes. The 150 Gy treatment showed the least damaging impact and induced maximum genetic variability in almost all the genotypes under study. Character association studies were also conducted which could be utilized in the selection of desirable mutants. Correlation studies revealed an altered association among the observed parameters from positive to negative direction in 300 Gy and 450 Gy treatments as compared to control. These deviations in correlation coefficients proved that mutagenesis can break the linkage among specific loci. Furthermore, path coefficient analysis identified the growth attributes with an effective direct and indirect contribution in yield.  相似文献   

14.
Soil salinity is one of the major abiotic stress limiting crop productivity and the geographical distribution of many important crops worldwide. To gain a better understanding of the salinity stress responses at physiological and molecular level in cultivated tomato (Solanum lycopersicum. cv. Supermarmande), we carried out a comparative physiological and proteomic analysis. The tomato seedlings were cultivated using a hydroponic system in the controlled environment growth chamber. The salt stress (NaCl) was applied (0, 50, 100, 150 and 200?mM), and maintained for 14 days. Salt treatment induced a plant growth reduction estimated as fresh-dry weight. Photosynthetic pigments (chlorophyll a, b) content of NaCl-treated tomato plants was significantly decreased as the salinity level increased. Proline accumulation levels in leaf and root tissues increased significantly with increasing NaCl concentration. Relative electrolyte leakage known as an indicator of membrane damage caused by salt stress was increased proportionally according to the NaCl concentrations. Roots of control and salt-stressed plants were also sampled for phenol protein extraction. Proteins were separated by two-dimensional gel electrophoresis (2-DGE). Several proteins showed up- and downregulation during salt stress. MALDI-TOF/MS analysis and database searching of some of the identified proteins indicated that the proteins are known to be in a wide range of physiological processes, that is, energy metabolism, ROS (reactive oxygen species) scavenging and detoxification, protein translation, processing and degradation, signal transduction, hormone and amino acid metabolism, and cell wall modifications. All proteins might work cooperatively to reestablish cellular homeostasis under salt stress, water deficiency, and ionic toxicity.  相似文献   

15.
Leaf senescence is one of the most limiting factors to plant productivity under salinity. Both the accumulation of specific toxic ions (e.g. Na+) and changes in leaf hormone relations are involved in the regulation of this process. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated for 3 weeks under high salinity (100 mM NaCl) and leaf senescence-related parameters were studied during leaf development in relation to Na+ and K+ contents and changes in abscisic acid (ABA), cytokinins, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the auxin indole-3-acetic acid (IAA). Na+ accumulated to a similar extent in both leaves 4 and 5 (numbering from the base of the plant) and more quickly during the third week, while concurrently K+ contents sharply decreased. However, photosystem II efficiency, measured as the F(v)/F(m) ratio, decreased from the second week of salinization in leaf 4 but only at the end of the third week in the younger leaf 5. In the prematurely senescent leaf 4, ABA content increased linearly while IAA strongly decreased with salinization time. Although zeatin (Z) levels were scarcely affected by salinity, zeatin-riboside (ZR) and the total cytokinin content (Z+ZR) progressively decreased by 50% from the imposition of the stress. ACC was the only hormonal compound that increased in leaf tissue coincident with the onset of oxidative damage and the decline in chlorophyll fluorescence, and prior to massive Na+ accumulation. Indeed, (Z+ZR) and ACC contents and their ratio (Z+ZR/ACC) were the hormonal parameters best correlated with the onset and progression of leaf senescence. The influence of different hormonal changes on salt-induced leaf senescence is discussed.  相似文献   

16.
Carbon dioxide (CO2) concentration in greenhouses is sub-optimal for vegetable production. Many techniques have been used to increase CO2 concentration in greenhouses but most of them are expensive with certain limitations and drawbacks. We adopted a new strategy to elevate CO2 concentration in the greenhouse throughout the day via crop residues and animal manure composting (CRAM). During the whole cultivation period, CRAM-treated greenhouse had doubled CO2 concentration which significantly increased the yield of cherry tomatoes (Solanum lycopersicum L.), i.e., up to 38%. The influence of CRAM procedure on cherry tomato quality was also investigated and the concentrations of total soluble solids (TSS) and soluble sugar were found to be significantly higher in cherry tomatoes grown under composting greenhouse than that of non-composting greenhouse. Additionally, CRAM-CO2 enrichment also resulted in increased concentrations of ascorbic acid (Vitamin C) and titrate acid as compared to control. In contrast, the concentration of nitrate was considerably decreased in cherry tomato grown under CO2 enriched condition than that of control. The increase in active oxygen metabolisms such as POD, CAT and SOD while a decrease in MDA, as well as APX was observed for cherry tomatoes grown under CO2 enriched condition. Hence, CO2 fertilization by using CRAM in greenhouse significantly improved quality and increased the yield of cherry tomatoes.  相似文献   

17.
Among the natural plant growth stimulants, moringa has attained enormous attention due to its leaf composition being enriched with cytokinin, antioxidants and minerals. Exogenous application of moringa leaf extract (MLE) improves productivity in many crops. This study investigated the potential of MLE with different dilutions, i.e., MLE0, MLE10, MLE20 and MLE30 (0, 10, 20 and 30 times diluted in water, respectively) to improve the performance of tomato. Foliage-applied water and benzylaminopurine (BAP, 50 mg L?1) were taken as controls. Among treatments, foliar-applied MLE30 produced maximum vegetative and flowering branches, number of flowers and heaviest fruits per plant of tomato in comparison with synthetic BAP and other treatments. A similar increase in vegetative and flowering branches was recorded for root-applied MLE20 including BAP. Foliage-applied MLE30 also increased chlorophyll (a) pigments and leaf total soluble proteins than other stimulants used. This increase was followed by enhanced antioxidant activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), total phenolics in leaves and fruit lycopene contents of tomato. In general, foliar application of MLE30 was more effective as natural biostimulant to improve growth, productivity and fruit quality of tomato as compared to synthetic BAP and its root application.  相似文献   

18.
19.
ABSTRACT: BACKGROUND: Many beneficial traits (e.g. disease or abiotic stress resistance) have been transferred into crops through crosses with their wild relatives. The 13 recognized species of tomato (Solanum section Lycopersicon) are closely related to each other and wild species genes have been extensively used for improvement of the crop, Solanum lycopersicum L. In addition, the lack of geographical barriers has permitted natural hybridization between S. lycopersicum and its closest wild relative Solanum pimpinellifolium in Ecuador, Peru and northern Chile. In order to better understand patterns of S. lycopersicum diversity, we sequenced 47 markers ranging in length from 130 to 1200 bp (total of 24 kb) in genotypes of S. lycopersicum and wild tomato species S. pimpinellifolium, Solanum arcanum, Solanum peruvianum, Solanum pennellii and Solanum habrochaites. Several of the markers had previously been hypothesized as carrying wild species alleles within S. lycopersicum, i.e., cryptic introgressions. RESULTS: Each marker was mapped with high confidence (e < 1 x 10-30) to a single genomic location using BLASTN against tomato whole genome shotgun chromosomes (SL2.40) database. Neighbor-joining trees showed high mean bootstrap support (86.8 plus or minus 2.34%) for distinguishing red-fruited from green-fruited taxa for 38 of the markers. Hybridization and parsimony splits networks, genomic map positions of markers relative to documented introgressions, and historical origins of accessions were used to interpret evolutionary patterns at nine markers with putatively introgressed alleles. CONCLUSION: Of the 47 genetic markers surveyed in this study, four were involved in linkage drag on chromosome 9 during introgression breeding, while alleles at five markers apparently originated from natural hybridization with S. pimpinellifolium and were associated with primitive genotypes of S. lycopersicum. The positive identification of introgressed genes within crop species such as S. lycopersicum will help inform conservation and utilization of crop germplasm diversity, for example, facilitating the purging of undesirable linkage drag or the exploitation of novel, favorable alleles.  相似文献   

20.
Elevated carbon dioxide (CO2) has been shown to enhance the growth and development of plants, especially of roots. Amongst them, lateral roots play an important role in nutrient uptake, and thus alleviate the nutrient limitation to plant growth under elevated CO2. This paper examined the mechanism underlying CO2 elevation-induced lateral root formation in tomato. The endogenous nitric oxide (NO) in roots was detected by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA). We suggest that CO2 elevation-induced NO accumulation was important for lateral root formation. Elevated CO2 significantly increased the activity of nitric oxide synthase in roots, but not nitrate reductase activity. Moreover, the pharmacological evidence showed that nitric oxide synthase rather than nitrate reductase was responsible for CO2 elevation-induced NO accumulation. Elevated CO2 enhanced the activity of nitric oxide synthase and promoted production of NO, which was involved in lateral root formation in tomato under elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号