首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeIORT with mobile linear accelerators is a well-established modality where the dose rate and, therefore, the dose per pulse are very high. The constancy of the dosimetric parameters of the accelerator has to be checked daily. The aim of this work is to develop a phantom with embedded detectors to improve both accuracy and efficiency in the daily test of an IORT linac at the surgery room.MethodsThe developed phantom is manufactured with transparent polymethyl methacrylate (PMMA), allocating 6 parallel-plate chambers: a central one to evaluate the on-axis beam output, another on-axis one placed at a fixed depth under the previous one to evaluate the energy constancy and four off-axis chambers to evaluate the flatness and symmetry. To analyse the readings a specific application has been developed.ResultsFor all chambers and energies, the mean saturation and polarization corrections were smaller than 0.7%. The beam is monitored at different levels of the clinical beam. Output, energy constancy and flatness correlate very well with the correspondent values with the complete applicator. During the first six months of clinical use the beam dosimetric parameters showed excellent stability.ConclusionsA phantom has been developed with embedded parallel plate chambers attached to the upper applicator part of an IORT linac. The phantom allows a very efficient setup reducing the time to check the parameters. It provides complete dosimetric information (output, energy and flatness) with just one shot and using ionization chambers with minimum saturation effect, as this highly pulsed beam requires.  相似文献   

2.
PurposeThe aim of the study was a multicenter evaluation of MLC&jaws-defined small field output factors (OF) for different linear accelerator manufacturers and for different beam energies using the latest synthetic single crystal diamond detector commercially available. The feasibility of providing an experimental OF data set, useful for on-site measurements validation, was also evaluated.MethodsThis work was performed in the framework of the Italian Association of Medical Physics (AIFM) SBRT working group. The project was subdivided in two phases: in the first phase each center measured OFs using their own routine detector for nominal field sizes ranging from 10 × 10 cm2 to 0.6 × 0.6 cm2. In the second phase, the measurements were repeated in all centers using the PTW 60019 microDiamond detector.ResultsThe project enrolled 30 Italian centers. Micro-ion chambers and silicon diodes were used for OF measurements in 24 and 6 centers respectively. Gafchromic films and TLDs were used for very small field OFs in 3 and 1 centers. Regarding the measurements performed with the user’s detectors, OF standard deviations (SD) for field sizes down to 2 × 2 cm2 were in all cases <2.7%. In the second phase, a reduction of around 50% of the SD was obtained using the microDiamond detector.ConclusionsThe measured values presented in this multicenter study provide a consistent dataset for OFs that could be a useful tool for improving dosimetric procedures in centers. The microDiamond data present a small variation among the centers confirming that this detector can contribute to improve overall accuracy in radiotherapy.  相似文献   

3.
It is important to accurately measure the charge carrier lifetime, a crucial parameter that influences the collection efficiency in organic solar cells. Five transient and small perturbation experimental techniques that measure charge carrier lifetime are applied to a device composed of the polymer PDTSiTTz blended with the fullerene PCBM: time‐resolved charge extraction (TRCE), transient absorption spectroscopy (TAS), photoinduced charge extraction by linearly increasing voltage (photo‐CELIV), transient photovoltage, and electrochemical impedance spectroscopy. The motivation is to perform a comprehensive comparison of several different lifetime measurement techniques on the same device in order to assess their relative accuracy, applicability to operational devices, and utility in data analysis. The techniques all produce similar charge carrier lifetimes at high charge densities, despite previous suggestions that transient methods are less accurate than small perturbation ones. At lower charge densities an increase in the apparent reaction order is observed. This may be related to surface recombination at the contacts beginning to dominate, or an inhomogeneous charge distribution. A combination of TAS and TRCE appears suitable. TAS enables the investigation of recombination mechanisms at early times since it is not limited by RC (resistance‐capacitance product) or charge extraction losses. Conversely, TRCE is useful particularly at low densities when other mechanisms, such as surface recombination, may occur.  相似文献   

4.
Three small parallel-plate ionization chambers were developed for measuring dose rates, of primarily low-energy alpha particles in the energy range 0.4-3.5 MeV, at a defined cell-Mylar interface. Spectral energy distributions of these alpha particles were also measured at the same position using a specially designed small-area silicon surface barrier detector. Dose rates were derived from the spectral distributions and compared with those derived from the ionization chambers. Different alpha-particle energies were obtained using a 144-MBq 238Pu collimated source and a variety of Mylar moderator foils of different thicknesses. These measurements, extended to mean alpha-particle energies as low as 0.4 MeV, will enable us to correlate radiobiological data with effects of alpha particles terminating in different regions of cell nuclei.  相似文献   

5.
For decades, classical crossover studies and linkage disequilibrium (LD) analysis of genomic regions suggested that human meiotic crossovers may not be randomly distributed along chromosomes but are focused instead in "hot spots." Recent sperm typing studies provided data at very high resolution and accuracy that defined the physical limits of a number of hot spots. The data were also used to test whether patterns of LD can predict hot spot locations. These sperm typing studies focused on several small regions of the genome already known or suspected of containing a hot spot based on the presence of LD breakdown or previous experimental evidence of hot spot activity. Comparable data on target regions not specifically chosen using these two criteria is lacking but is needed to make an unbiased test of whether LD data alone can accurately predict active hot spots. We used sperm typing to estimate recombination in 17 almost contiguous ~5 kb intervals spanning 103 kb of human Chromosome 21. We found two intervals that contained new hot spots. The comparison of our data with recombination rates predicted by statistical analyses of LD showed that, overall, the two datasets corresponded well, except for one predicted hot spot that showed little crossing over. This study doubles the experimental data on recombination in men at the highest resolution and accuracy and supports the emerging genome-wide picture that recombination is localized in small regions separated by cold areas. Detailed study of one of the new hot spots revealed a sperm donor with a decrease in recombination intensity at the canonical recombination site but an increase in crossover activity nearby. This unique finding suggests that the position and intensity of hot spots may evolve by means of a concerted mechanism that maintains the overall recombination intensity in the region.  相似文献   

6.
Applied algal studies typically require enumeration of preserved cells. As applications of algal assessments proliferate, understanding sources of variability inherent in the methods by which abundance and species composition data are obtained becomes even more important for precision of measurements. We performed replicate counts of diatoms on permanently fixed coverglasses and all algae in Palmer–Maloney chambers to assess precision and accuracy of measurements derived from common counting methods. We counted diatoms and all algae with transects and random fields. Variability estimates (precision) of diatom density, species diversity, and species composition on permanent coverglasses were low between replicate subsamples and between replicate transects. However, average density estimates of diatoms settled on coverglasses determined with transect methods were 42–52% greater than density estimates made with random fields. This bias was due to a predictable, nonrandom distribution of diatoms on the coverglass with few diatoms near edges. Despite bias in density when counting diatoms along coverglass transects, no bias was observed in estimates of species composition. Estimates of density and taxa richness of all-algae in Palmer–Maloney chambers also had low variability among multiple transects and high similarity in species composition between transects. In addition, counting method in Palmer–Maloney chambers did not affect estimates of algal cell density, taxa richness, and species composition, which suggested that counting units were distributed randomly in the chambers. Thus, most sources of variability in sample preparation and analysis are small; however, transect counts should not be used to estimate cell density, and sufficient numbers of random fields must be counted to account for edge effects on cell distribution with material settled on permanently fixed coverglasses.  相似文献   

7.
A population genetic two-locus model with additive, directional selection and recombination is considered. It is assumed that recombination is weaker than selection; i.e., the recombination parameter r is smaller than the selection coefficients. This assumption is appropriate for describing the effects of two-locus selection at the molecular level. The model is formulated in terms of ordinary differential equations (ODES) for the gamete frequencies x = (x 1, x 2, x 3, x 4), defined on the simplex S 4. The ODEs are analyzed using first a regular pertubation technique. However, this approach yields satisfactory results only if r is very small relative to the selection coefficients and if the initial values x(0) are in the interior part of S 4. To cope with this problem, a novel two-scale perturbation method is proposed which rests on the theory of averaging of vectorfields. It is demonstrated that the zeroth-order solution of this two-scale approach approximates the numerical solution of the model well, even if recombination rate is on the order of the selection coefficients.  相似文献   

8.
A new method for analysis of lichen triterpenoids was established using high performance liquid chromatography with the combination of a differential refractive index detector (RID) and a photodiode array detector (PDA). It is proved that this method was convenient to detect and identify aromatic and aliphatic lichen substances; it enabled quantitative analysis of substances having no or less absorption of ultraviolet rays such as triterpenoids. In addition, they can be measured in high accuracy compared with the TLC method.  相似文献   

9.
Method of high-precision microsample blood and plasma mass densitometry   总被引:2,自引:0,他引:2  
The reliability of the mechanical oscillator technique (MOT) for blood and plasma mass density measurements on small samples is quantified in this paper. Sources of measurement errors that can reduce both the accuracy and precision of density determinations include storage of plasma samples, inhomogeneity of blood samples, and density reading before adequate temperature equilibration. Measurements on fractions from identical samples and repeated samplings from test subjects under steady-state conditions revealed a 10(-2) g/l reproducibility of density readings. The mean plasma density (PD) readings did not change significantly after up to 1-wk storage at +4 degrees C or up to 2 mo storage at -20 degrees C. The variability of the PD findings increased with storage time and were generally higher with storage at -20 degrees C, compared with +4 degrees C. Densitometers of different sizes were used to evaluate rheological influences on blood density (BD) readings. Linear correlations between PD and plasma protein concentration, between BD and blood hemoglobin concentration, and between erythrocyte density and mean corpuscular hemoglobin concentration were significant (P less than 0.001). Rapid density measurements with up to 10(-2) g/l reliability on small (less than 0.1 ml) volumes of biological fluids and continuous blood densitometry can be performed with use of the MOT.  相似文献   

10.
BackgroundSymmetry and flatness are two quantities which should be evaluated in the commissioning and quality control of an electron beam in electron beam radiotherapy. The aim of this study is to compare symmetry and flatness obtained using three different dosimeters for various small and large fields in electron beam radiotherapy with linac.Materials and methodsBeam profile measurements were performed in a PTW water phantom for 10, 15 and 18 MeV electron beams of an Elekta Precise linac for small and large beams (1.5 × 1.5 cm2 to 20 × 20 cm2 field sizes). A Diode E detector and Semiflex-3D and Advanced Markus ionization chambers were used for dosimetry.ResultsBased on the obtained results, there are minor differences between the responses from different dosimeters (Diode E detector and Semiflex-3D and Advanced Markus ionization chambers) in measurement of symmetry and flatness for the electron beams. The symmetry and flatness values increase with increasing field size and electron beam energy for small and large field sizes, while the increases are minor in some cases.ConclusionsThe results indicate that the differences between the symmetry and flatness values obtained from the three dosimeter types are not practically important.  相似文献   

11.
MR-integrated radiotherapy requires suitable dosimetry detectors to be used in magnetic fields. This study investigates the feasibility of using dedicated MR-compatible ionization chambers at MR-integrated radiotherapy devices. MR-compatible ionization chambers (Exradin A19MR, A1SLMR, A26MR, A28MR) were precisely modeled and their relative response in a 6MV treatment beam in the presence of a magnetic field was simulated using EGSnrc. Monte Carlo simulations were carried out with the magnetic field in three orientations: the magnetic field aligned perpendicular to the chamber and beam axis (transverse orientation), the magnetic field parallel to the chamber as well as parallel to the beam axis. Monte Carlo simulation results were validated with measurements using an electromagnet with magnetic field strength upto 1.1 T with the chambers in transverse orientation. The measurements and simulation results were in good agreement, except for the A26MR ionization chamber in transverse orientation. The maximum increase in response of the ionization chambers observed was 8.6% for the transverse orientation. No appreciable change in chamber response due to the magnetic field was observed for the magnetic field parallel to the ionization chamber and parallel to the photon beam.Polarity and recombination correction factor were experimentally investigated in the transverse orientation. The polarity effect and recombination effect were not altered by a magnetic field.This study further investigates the response of the ionization chambers as a function of the chambers’ rotation around their longitudinal axis. A variation in response was observed when the chamber was not rotationally symmetric, which was independent of the magnetic field.  相似文献   

12.
PurposeIn modern radiotherapy techniques, to ensure an accurate beam modeling process, dosimeters with high accuracy and spatial resolution are required. Therefore, this work aims to propose a simple, robust, and a small-scale fiber-integrated X-ray inorganic detector and investigate the dosimetric characteristics used in radiotherapy.MethodsThe detector is based on red-emitting silver-activated zinc-cadmium sulfide (Zn,Cd)S:Ag nanoclusters and the proposed system has been tested under 6 MV photons with standard dose rate used in the patient treatment protocol. The article presents the performances of the detector in terms of dose linearity, repeatability, reproducibility, percentage depth dose distribution, and field output factor. A comparative study is shown using a microdiamond dosimeter and considering data from recent literature.ResultsWe accurately measured a small field beam profile of 0.5 × 0.5 cm2 at a spatial resolution of 100 µm using a LINAC system. The dose linearity at 400 MU/min has shown less than 0.53% and 1.10% deviations from perfect linearity for the regular and smallest field. Percentage depth dose measurement agrees with microdiamond measurements within 1.30% and 2.94%, respectively for regular to small field beams. Besides, the stem effect analysis shows a negligible contribution in the measurements for fields smaller than 3x3 cm2. This study highlights the drastic decrease of the convolution effect using a point-like detector, especially in small dimension beam characterization. Field output factor has shown a good agreement while comparing it with the microdiamond dosimeter.ConclusionAll the results presented here anticipated that the developed detector can accurately measure delivered dose to the region of interest, claim accurate depth dose distribution hence it can be a suitable candidate for beam characterization and quality assurance of LINAC system.  相似文献   

13.
The determination of the dose delivered to the body during Total Body Irradiation (TBI) is not easy, as direct measurements are impossible. This article presents the intention to develop a systematic and simple method for absorbed dose determination in(60)Co TBI using mid plane dose factors (MDF) and external measurements, i.e. entrance and exit dose readings by semiconductor detectors. In order to perform the radiation field analysis prior to TBI treatment, a special silicon n-type detector with increased sensitivity (1200 nC/Gy) was used. The dependence of the calibration factor of this detector exposed to different dose rates in standard and TBI conditions was investigated. A theoretical model of anthropomorphic phantoms of cylindrical ellipsoid shape was established. The software made it possible to generalize the applicability of TBI dosimetry to any individual case of real patient data. A quality assurance analysis of dosimetric results of 350 patients, who underwent TBI during a 17-year period, was performed.  相似文献   

14.
15.
Ultrafast absorption spectroscopy is used to study heme-NO recombination at room temperature in aqueous buffer on time scales where the ligand cannot leave its cage environment. While a single barrier is observed for the cage recombination of NO with heme in the absence of globin, recombination in hemoglobin and myoglobin is nonexponential. Examination of hemoglobin with and without inositol hexaphosphate points to proximal constraints as important determinants of the geminate rebinding kinetics. Molecular dynamics simulations of myoglobin and heme-imidazole subsequent to ligand dissociation were used to investigate the transient behavior of the Fe-proximal histidine coordinate and its possible involvement in geminate recombination. The calculations, in the context of the absorption measurements, are used to formulate a distinction between nonexponential rebinding that results from multiple protein conformations (substates) present at equilibrium or from nonequilibrium relaxation of the protein triggered by a perturbation such as ligand dissociation. The importance of these two processes is expected to depend on the time scale of rebinding relative to equilibrium fluctuations and nonequilibrium relaxation. Since NO rebinding occurs on the picosecond time scale of the calculated myoglobin relaxation, a time-dependent barrier is likely to be an important factor in the observed nonexponential kinetics. The general implications of the present results for ligand binding in heme proteins and its time and temperature dependence are discussed. It appears likely that, at low temperatures, inhomogeneous protein populations play an important role and that as the temperature is raised, relaxation effects become significant as well.  相似文献   

16.
Air pressure in leaf chambers is thought to affect gas exchange measurements through changes in partial pressure of the air components. However, other effects may come into play when homobaric leaves are measured in which internal lateral gas flow may occur. When there was no pressure difference between the leaf chamber and ambient air (DeltaP=0), it was found in previous work that lateral CO(2) diffusion could affect measurements performed with clamp-on leaf chambers. On the other hand, overpressure (DeltaP>0) in leaf chambers has been reported to minimize artefacts possibly caused by leaks in chamber sealing. In the present work, net CO(2) exchange rates (NCER) were measured under different DeltaP values (0.0-3.0 kPa) on heterobaric and homobaric leaves. In heterobaric leaves which have internal barriers for lateral gas movement, changes in DeltaP had no significant effect on NCER. For homobaric leaves, effects of DeltaP>0 on measured NCER were significant, obviously due to lateral gas flux inside the leaf mesophyll. The magnitude of the effect was largely defined by stomatal conductance; when stomata were widely open, the impact of DeltaP on measured NCER was up to 7 mumol CO(2) m(-2) s(-1) kPa(-1). Since many other factors are also involved, neither DeltaP=0 nor DeltaP>0 was found to be the 'one-size fits all' solution to avoid erroneous effects of lateral gas transport on measurements with clamp-on leaf chambers.  相似文献   

17.
A determination of dopamine (DA), noradrenaline (NA), 3,4-dihydroxyphenylalanine (DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindolacetic acid (5-HIAA) in nervous tissue is described. The method is based on a rapidly performed isolation of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA from one single nervous tissue sample on small columns of Sephadex G-10, followed by reverse-phase high-performance liquid chromatography with electrochemical detection. A new type of electrochemical detector based on a rotating disk electrode (RDE) was used. The rotating disc electrode was found to be a reliable and sensitive amperometric detector with several advantages over the currently used thin-layer cells. The detector appeared very useful for routine analysis. Practical details are given for the routine use of the RDE. Brain samples containing no more than 75-150 pg (DA, DOPA, DOPAC, HVA, and 5-HIAA) or 500 pg (NA) could be reproducibly assayed with high recovery (approx. 85%) and precision (approx. 5%), without the use of internal standards. Endogenous concentrations of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA were determined in eight brain structures.  相似文献   

18.
Large perturbation transient photovoltage and impedance spectroscopy measurements are used to gain insights into recombination in organic photovoltaic devices. The combination of these two simple optoelectronic techniques enables characterization of recombination order as well as mobile and trapped charge evolution over a large range of carrier densities. The data show that trapped charge is approximately equal to total charge at low carrier densities in the high efficiency devices measured. Between low and high charge carrier density, the order of recombination is observed to vary from monomolecular to bimolecular to higher order. The new techniques and methods presented can be applied to any type of photovoltage device to gain insight into device operation and limitations.  相似文献   

19.
A cell density monitor, comprising parts of a liquid chromatography system, was adapted for on-line real-time measurement of bacterial cell density up to 75 g l–1. The device dilutes the sample containing cells and measures the absorbancy at 280 nm. This detector gives an excellent correlation with off-line measurements, good reproducibility, a low limit of detection (3.5 mg l–1), and becomes a low cost alternative for fermentation monitoring in small stirred bioreactors.  相似文献   

20.
X-ray detectors based on single crystal diamond film made via chemical vapor deposition were investigated to evaluate their performance under clinically relevant conditions for radiotherapy dosimetry. Studies focused on repeatability, dose rate dependence, tissue phantom ratios, output factors and beam profiling. Repeatability experiments revealed a temporary loss in sensitivity due to charge detrapping effects following irradiation, which was modeled to make corrections that improved short-term precision. Dose rate dependence was observed (Fowler fitting parameter Δ = 0.96 ± 0.2) using dose rates up to ~2 Gy min^?1. The detector statistically distinguished (n = 5, P < 0.05) between dose values separated by 7.7 × 10^?3 Gy (1 MU). Depth dose measurements from 1 to 15 cm and output factors using 3 × 3 to 10 × 10 cm^2 field sizes compared well with a Farmer ion chamber (<1.3% difference). Output factor measurements indicate encouraging results for fields sizes <4 × 4 cm^2. Off-axis measurements showed that perturbation of the beam could be reduced when the detector is used in the edge-on orientation due to its thin-film sandwich configuration and ~200 nm thick Ag contacts. This relatively inexpensive detector has potential to be used for routine dosimetry using conventional radiotherapy instrumentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号