首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
《Genomics》2020,112(1):859-866
Lysine formylation is a newly discovered post-translational modification in histones, which plays a crucial role in epigenetics of chromatin function and DNA binding. In this study, a novel bioinformatics tool named CKSAAP_FormSite is proposed to predict lysine formylation sites. An effective feature extraction method, the composition of k-spaced amino acid pairs, is employed to encode formylation sites. Moreover, a biased support vector machine algorithm is proposed to solve the class imbalance problem in the prediction of formylation sites. As illustrated by 10-fold cross-validation, CKSAAP_FormSite achieves an satisfactory performance with an AUC of 0.8234. Therefore, CKSAAP_FormSite can be a useful bioinformatics tool for the prediction of formylation sites. Feature analysis shows that some amino acid pairs, such as ‘KA’, ‘SxxxxK’ and ‘SxxxA’ around formylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of formylation.  相似文献   

2.
3.
BackgroundImmune cells, vital components of tumor microenvironment, regulate tumor survival and progression. Lung adenocarcinoma (LUAD), the tumor with the highest mortality rate worldwide, reconstitutes tumor immune microenvironment (TIME) to avoid immune destruction. Data have shown that TIME influences LUAD prognosis and predicts immunotherapeutic efficacy. The related information about the role of TIME's characteristics in LUAD is limited.MethodsWe performed unsupervised consensus clustering via machine-learning techniques to identify TIME clusters among 1906 patients and gathered survival data. The characteristics of TIME clusters of LUAD were visualized by multi-omics analysis, pseudo-time dynamic analysis, and enrichment analysis. TIME score model was constructed by principal component analysis. Comprehensive analysis and validation were conducted to test the prognostic efficacy and immunotherapeutic response of TIME score.ResultsTIME clusters (A, B and C) were constructed and exhibited different immune infiltration states. Multi-omics analyses included significant mutated genes (SMG), copy number variation (CNV) and cancer stemness that were significantly different among the three clusters. TIME cluster A had a lower SMG, lower CNV, and lower stemness but a higher immune infiltration level compared to TIME clusters B and C. TIME score showed that patients in low TIME score group had higher overall survival rates, higher immune infiltration level and high expression of immune checkpoints. In validation cohorts, low TIME score subgroup had better drug sensitivity and favorable immunotherapeutic response.ConclusionWe constructed a stable model of LUAD immune microenvironment characteristics that may improve the prognostic accuracy of patients, provide improved explanations of LUAD responses to immunotherapy, and provide new strategies for LUAD treatment.  相似文献   

4.
The role of the immune system in the surveillance of transformed cells has seen a resurgence of interest in the last 10 years, with a substantial body of data in mice and humans supporting a role for the immune system in host protection from tumor development and in shaping tumor immunogenicity. A number of earlier studies have demonstrated that eosinophils, when recruited into tumors, can very effectively eradicate transplantable tumors. In this study, we investigated whether eosinophils also play a role in tumor immune surveillance by determining the incidence of methylcholanthrene (MCA)-induced fibrosarcomas in IL-5 transgenic mice that have greatly enhanced levels of circulating eosinophils, CCL11 (eotaxin-1)-deficient mice that lack a key chemokine that recruits eosinophils into tissues, and the eosinophil-deficient mouse strains, IL-5/CCL11(-/-) and DeltadblGATA. It was found that MCA-induced tumor incidence and growth were significantly attenuated in IL-5 transgenic mice of both the BALB/c and C57BL/6 backgrounds. Histological examination revealed that the protective effect of IL-5 was associated with massively enhanced numbers of eosinophils within and surrounding tumors. Conversely, there was a higher tumor incidence in CCL11(-/-) BALB/c mice, which was associated with a reduced eosinophil influx into tumors. This correlation was confirmed in the eosinophil-deficient IL-5/CCL11(-/-) and DeltadblGATA mouse strains, where tumor incidence was greatly increased in the total absence of eosinophils. In addition, subsequent in vitro studies found that eosinophils could directly kill MCA-induced fibrosarcoma cells. Collectively, our data support a potential role for the eosinophil as an effector cell in tumor immune surveillance.  相似文献   

5.
6.
In a series of human corticotroph adenomas, we recently found predominant mRNA expression of somatostatin (SS) receptor subtype 5 (sst5). After 72 h, the multiligand SS analog SOM230, which has a very high sst5 binding affinity, but not Octreotide (OCT), significantly inhibited basal ACTH release. To further explore the role of sst5 in the regulation of ACTH release, we conducted additional studies with mouse AtT-20 cells. SOM230 showed a 7-fold higher ligand binding affinity and a 19-fold higher potency in stimulating guanosine 5'-O-(3-thiotriphosphate) binding in AtT-20 cell membranes compared with OCT. SOM230 potently suppressed CRH-induced ACTH release, which was not affected by 48-h dexamethasone (DEX) pretreatment. However, DEX attenuated the inhibitory effects of OCT on ACTH release, whereas it increased the inhibitory potency of BIM-23268, an sst5-specific analog, on ACTH release. Quantitative PCR analysis showed that DEX lowered sst(2A+2B) mRNA expression significantly after 24 and 48 h, whereas sst5 mRNA levels were not significantly affected by DEX treatment. Moreover, Scatchard analyses showed that DEX suppressed maximum binding capacity (B(max)) by 72% when 125I-Tyr3-labeled OCT was used as radioligand, whereas B(max) declined only by 17% when AtT-20 cells were treated with [125I-Tyr11]SS-14. These data suggest that the sst5 protein, compared with sst2, is more resistant to glucocorticoids. Finally, after SS analog preincubation, compared with OCT both SOM230 and BIM-23268 showed a significantly higher inhibitory effect on CRH-induced ACTH release. In conclusion, our data support the concept that the sst5 receptor might be a target for new therapeutic agents to treat Cushing's disease.  相似文献   

7.
8.
Glycoprotein T 11 target structure (T11TS), derived from sheep erythrocyte membrane, directly interacts with T cells to activate them to enter in the brain. When untreated, glioma exerts an immune-suppressive environment in its vicinity by secreting prostaglandin E2 (PGE2), IL-10, tumor growth factor beta, gangliosides etc. to dampen the immune attack. But exogenous administration of T11TS reverses the situation to pro-inflammatory immune active state by expressing enhanced IL-12 and tumor necrosis factor alpha (TNF-alpha) production and suppression of IL-4 and IL-10 levels. The T11TS activated lymphocytic accumulation along the capillary endothelium in brain and their penetration in the matrix was evident from histological sections. IL-6 with TNF-alpha facilitates leukocyte migration to glioma site to exert cytotoxic effector function. Brain infiltrated lymphocytes offer cytotoxic proximity to neoplastic glial cells, which lead them to apoptosis. In the Th1 dominated microenvironment microglial cells was found with enhanced phagocytic functions. Initially infiltrated lymphocytes with microglia showed increased production of TNF-alpha, interferon gamma (IFN-gamma) to facilitate their effector actions. Repeated dosing of T11TS shows glioma abrogation in rat model, but also a resurgence of anti-inflammatory cytokine environment found with increased IL-4, IL-10 and decreased IL-12, IL-6, TNF-alpha. This is a unique homeostatic regulation of total immune system after T11TS mediated carnage of glioma. The resultant balance of cytokines between interacting glioma cells, T cells and microglia in T11TS induced condition determines the success of its immunotherapeutic effect in glioma.  相似文献   

9.
Prostate cancer poses considerable threat to the aging male population as it has become a leading cause of cancer death to this group. Due to the complexity of this age-related disease, the mechanism(s) and factors resulting in prostate cancer remain unclear. Reports showing an increase risk in prostatic cancer with increasing dietary fat are contrasted by other studies suggesting the beneficial effects of certain polyunsaturated fatty acid (PUFA) in the modulation of tumor development. The n-6 PUFA, gamma-linolenic acid (GLA), has been shown to suppress tumor growth in vitro. Therefore, using the Lobund-Wistar (L-W) rat model of prostate cancer, we tested the hypothesis whether dietary supplementation of GLA could suppress tumor growth and development in vivo. Prostatic adenocarcinomas were induced in two groups of L-W rats, the experimental group (N-nitroso-N-methylurea, NMU/testosterone propionate, TP) and the GLA group (NMU/TP/GLA fed) undergoing similar treatment but fed a purified diet supplemented with GLA. Our findings revealed a decrease in prostate growth in the NMU/TP/GLA-fed group as determined by weight, tissue size, DNA content and prostate-specific antigen (tumor marker of prostate cancer). Comparison between the two groups showed a significant increase in 5S-hydroxyeicosatetraenoic acid and prostaglandin E(2) in the NMU/TP group. These increases paralleled the increased protein expression and activity of cyclooxygenase-2 as well as increased activity of 5-lipoxygenase. Taken together, the findings showed that intake of GLA-enriched diet does reduce prostatic cancer development in L-W rats and could serve as a non-toxic adjunct in management of human prostatic cancer.  相似文献   

10.
11.
Docetaxel resistance remains one of the main problems in clinical treatment of metastatic prostate cancer (PCa). Previous studies identified differently expressed lncRNAs in docetaxel-resistant PCa cell lines, while the potential mechanisms were still unknown. In the present study, we found NEAT1 was expressed at high levels in docetaxel-resistant PCa clinical samples and related cell lines. When knockdown NEAT1, cell proliferation and invasion in docetaxel-resistant PCa cells in vitro and in vivo were downregulated. Our further researches explained that NEAT1 exerts oncogenic function in PCa by competitively ‘sponging’ both miR-34a-5p and miR-204-5p. Inhibition of miR-34a-5p or miR-204-5p expression mimics the docetaxel-resistant activity of NEAT1, whereas ectopic expression of miR-34a-5p or miR-204-5p attenuates the anti-drug function of NEAT1 in PCa cells. Besides, we also found ACSL4 is a target of both miR-34a-5p and miR-204-5p, and ACSL4 was also inhibited by miR-34a-5p and miR-204-5p. Moreover, suppression of miR-34a-5p or/and miR-204-5p greatly restrained the expression of ACSL4 upon NEAT1 overexpression. Joint expression of miR-34a-5p and miR-204a-5p synergistically decreased the expression of ASCL4, indicating miR-34a-5p and miR-204a-5p collaboratively inhibit the expression of ACSL4. Innovatively, we concluded that NEAT1 contributes to the docetaxel resistance by increasing ACSL4 via sponging miR-34a-5p and miR-204-5p in PCa cells.  相似文献   

12.
Long noncoding RNAs (lncRNAs) play crucial roles in tumor development of osteosarcoma (OS). LncRNA PCAT6 was involved in the progression of multiple human cancers. However, the biological function of PCAT6 in OS remains largely unknown. We found that PCAT6 was elevated in OS tissues relative to that in their adjacent normal tissues. The upregulation of PCAT6 was positively associated with metastasis status and advanced stages and predicted poor overall and progression-free survivals in patients with OS. Functionally, silencing PCAT6 inhibited the proliferation, migration and invasion abilities of OS cells. Mechanistically, PCAT6, acting as a competitive endogenous RNA, upregulated expression of TGFBR1 and TGFBR2 to activate TGF-β pathway via sponging miR-185–5p. This study uncovers a novel underlying molecular mechanism of PCAT6-miR-185-5p-TGFBR1/2-TGF-β signaling axis in promoting tumor progression in OS, which indicates that PCAT6 may serve as a promising prognostic factor and therapeutic target again OS.  相似文献   

13.
14.
15.
16.
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号