共查询到20条相似文献,搜索用时 15 毫秒
1.
Jennifer L. Macdonald-Obermann Sangeeta Adak Ralf Landgraf David Piwnica-Worms Linda J. Pike 《The Journal of biological chemistry》2013,288(42):30773-30784
ErbB3 is a member of the ErbB family of receptor tyrosine kinases. It is unique because it is the only member of the family whose kinase domain is defective. As a result, it is obliged to form heterodimers with other ErbB receptors to signal. In this study, we characterized the interaction of ErbB3 with the EGF receptor and ErbB2 and assessed the effects of Food and Drug Administration-approved therapeutic agents on these interactions. Our findings support the concept that ErbB3 exists in preformed clusters that can be dissociated by NRG-1β and that it interacts with other ErbB receptors in a distinctly hierarchical fashion. Our study also shows that all pairings of the EGF receptor, ErbB2, and ErbB3 form ligand-independent dimers/oligomers. The small-molecule tyrosine kinase inhibitors erlotinib and lapatinib differentially enhance the dimerization of the various ErbB receptor pairings, with the EGFR/ErbB3 heterodimer being particularly sensitive to the effects of erlotinib. The data suggest that the physiological effects of these drugs may involve not only inhibition of tyrosine kinase activity but also a dynamic restructuring of the entire network of receptors. 相似文献
2.
Lu Yang Yun Li Yi Ding Kyoung-Soo Choi A. Latif Kazim Yuesheng Zhang 《The Journal of biological chemistry》2013,288(4):2365-2375
Prolidase, also known as Xaa-Pro dipeptidase or peptidase D (PEPD), is a ubiquitously expressed cytosolic enzyme that hydrolyzes dipeptides with proline or hydroxyproline at the carboxyl terminus. In this article, however, we demonstrate that PEPD directly binds to and activates epidermal growth factor receptor (EGFR), leading to stimulation of signaling proteins downstream of EGFR, and that such activity is neither cell-specific nor dependent on the enzymatic activity of PEPD. In line with the pro-survival and pro-proliferation activities of EGFR, PEPD stimulates DNA synthesis. We further show that PEPD activates EGFR only when it is present in the extracellular space, but that PEPD is released from injured cells and tissues and that such release appears to result in EGFR activation. PEPD differs from all known EGFR ligands in that it does not possess an epidermal growth factor (EGF) motif and is not synthesized as a transmembrane precursor, but PEPD binding to EGFR can be blocked by EGF. In conclusion, PEPD is a ligand of EGFR and presents a novel mechanism of EGFR activation. 相似文献
3.
Dang M Dubbin K D'Aiello A Hartmann M Lodish H Herrlich A 《The Journal of biological chemistry》2011,286(20):17704-17713
The dysregulation of EGF family ligand cleavage has severe consequences for the developing as well as the adult organism. Therefore, their production is highly regulated. The limiting step is the ectodomain cleavage of membrane-bound precursors by one of several a disintegrin and metalloprotease (ADAM) metalloproteases, and understanding the regulation of cleavage is an important goal of current research. We have previously reported that in mouse lung epithelial cells, the pro-EGF ligands TGFα, neuregulin 1β (NRG), and heparin-binding EGF are differentially cleaved depending on the cleavage stimulus (Herrlich, A., Klinman, E., Fu, J., Sadegh, C., and Lodish, H. (2008) FASEB J.). In this study in mouse embryonic fibroblasts that lack different ADAMs, we show that induced cleavage of EGF ligands can involve the same substrate-specific metalloprotease but does require different stimulus-dependent signaling pathways. Cleavage was stimulated by phorbol ester (12-O-tetradecanoylphorbol-13-acetate (TPA), a mimic of diacylglycerol and PKC activator), hypertonic stress, lysophosphatidic acid (LPA)-induced G protein-coupled receptor activation, or by ionomycin-induced intracellular calcium release. Although ADAMs showed substrate preference (ADAM17, TGFα and heparin-binding EGF; and ADAM9, NRG), substrate cleavage differed substantially with the stimulus, and cleavage of the same substrate depended on the presence of different, sometimes multiple, PKC isoforms. For instance, classical PKC was required for TPA-induced but not hypertonic stress-induced cleavage of all EGF family ligands. Inhibition of PKCζ enhanced NRG release upon TPA stimulation, but it blocked NRG release in response to hypertonic stress. Our results suggest a model in which substantial regulation of ectodomain cleavage occurs not only on the metalloprotease level but also on the level of the substrate or of a third protein. 相似文献
4.
Meryem Bektas Puneet S. Jolly Paula Berkowitz Masayuki Amagai David S. Rubenstein 《The Journal of biological chemistry》2013,288(13):9447-9456
The pemphigus family of autoimmune bullous disorders is characterized by autoantibody binding to desmoglein 1 and/or 3 (dsg1/dsg3). In this study we show that EGF receptor (EGFR) is activated following pemphigus vulgaris (PV) IgG treatment of primary human keratinocytes and that EGFR activation is downstream of p38 mitogen-activated protein kinase (p38). Inhibition of EGFR blocked PV IgG-triggered dsg3 endocytosis, keratin intermediate filament retraction, and loss of cell-cell adhesion in vitro. Significantly, inhibiting EGFR prevented PV IgG-induced blister formation in the passive transfer mouse model of pemphigus. These data demonstrate cross-talk between dsg3 and EGFR, that this cross-talk is regulated by p38, and that EGFR is a potential therapeutic target for pemphigus. Small-molecule inhibitors and monoclonal antibodies directed against EGFR are currently used to treat several types of solid tumors. This study provides the experimental rationale for investigating the use of EGFR inhibitors in pemphigus. 相似文献
5.
Christopher C. Pan Sanjay Kumar Nirav Shah Dale G. Hoyt Lukas J. A. C. Hawinkels Karthikeyan Mythreye Nam Y. Lee 《The Journal of biological chemistry》2014,289(37):25486-25496
Endoglin is a transforming growth factor β (TGF-β) co-receptor essential for angiogenesis and tumor vascularization. Endoglin modulates the crucial balance between pro- and anti-angiogenic signaling by activin receptor-like kinase (ALK) 1, 5, and TGF-β type II (TβRII) receptors. Despite its established role in physiology and disease, the mechanism of endoglin down-regulation remains unknown. Here we report that the conserved juxtamembrane cytoplasmic tyrosine motif (612YIY614) is a critical determinant of angiogenesis. Src directly phosphorylates this motif to induce endoglin internalization and degradation via the lysosome. We identified epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) as Src-activators that induce endoglin turnover following 612YIY614 phosphorylation. Interestingly, Src phosphorylation of endoglin-612YIY614 was also an important process for receptor down-regulation by TRACON105 (TRC105), an endoglin-targeting antibody currently in clinical trials. The regulation of 612YIY614 phosphorylation was critical for angiogenesis, as both the phosphomimetic and unphosphorylatable mutants impaired endothelial functions including proliferation, migration, and capillary tube formation. Collectively, these findings establish Src and pro-angiogenic mitogens as critical mediators of endoglin stability and function. 相似文献
6.
Aarif Ahsan Dipankar Ray Susmita G. Ramanand Ashok Hegde Christopher Whitehead Alnawaz Rehemtulla Yoshihiro Morishima William B. Pratt Yoichi Osawa Theodore S. Lawrence Mukesh K. Nyati 《The Journal of biological chemistry》2013,288(37):26879-26886
An eight-amino acid segment is known to be responsible for the marked difference in the rates of degradation of the EGF receptor (ErbB1) and ErbB2 upon treatment of cells with the Hsp90 inhibitor geldanamycin. We have scrambled the first six amino acids of this segment of the EGF receptor (EGFR), which lies in close association with the ATP binding cleft and the dimerization face. Scrambling these six amino acids markedly reduces EGFR stability, EGF-stimulated receptor dimerization, and autophosphorylation activity. Two peptides were synthesized as follows: one containing the wild-type sequence of the eight-amino acid segment, which we call Disruptin; and one with the scrambled sequence. Disruptin inhibits Hsp90 binding to the EGFR and causes slow degradation of the EGFR in two EGFR-dependent cancer cell lines, whereas the scrambled peptide is inactive. This effect is specific for EGFR versus other Hsp90 client proteins. In the presence of EGF, Disruptin, but not the scrambled peptide, inhibits EGFR dimerization and causes rapid degradation of the EGFR. In contrast to the Hsp90 inhibitor geldanamycin, Disruptin inhibits cancer cell growth by a nonapoptotic mechanism. Disruptin provides proof of concept for the development of a new class of anti-tumor drugs that specifically cause EGFR degradation. 相似文献
7.
8.
Aiwen Dong Dariusz Wodziak Anson W. Lowe 《The Journal of biological chemistry》2015,290(13):8016-8027
The epidermal growth factor receptor (EGFR) is a well characterized receptor-tyrosine kinase that functions in development and serves a vital role in many human cancers. Understanding EGFR regulatory mechanisms, and hence approaches for clinical intervention, has focused on ligand-receptor interactions and tyrosine kinase activity. Here, we show using the NCI-H460 lung and A431 epidermoid human cancer cell lines that EGFR binding to anterior gradient homolog 2 (AGR2) in the endoplasmic reticulum is required for receptor delivery to the plasma membrane and thus EGFR signaling. Reduced AGR2 protein levels or mutation of an essential cysteine in the active site result in decreased cell surface EGFR and a concomitant decrease in signaling as reflected by AREG, EGR1, and FOS expression. Similar to previously described EGFR nulls, an AGR2 null also resulted in embryonic lethality. Consistent with its role in regulating EGFR-mediated signaling, AGR2 expression is also enhanced in many human cancers and promotes the transformed phenotype. Furthermore, EGFR-mediated signaling in NCI-H460 cells, which are resistant to the tyrosine kinase inhibitor AG1478, is also disrupted with reduced AGR2 expression. The results provide insights into why cancer prognosis or response to therapy often does not correlate with EGFR protein or RNA levels because they do not reflect delivery to the cell surface where signaling is initiated. AGR2, therefore, represents a novel post-translational regulator of EGFR-mediated signaling and a promising target for treating human cancers. 相似文献
9.
Hanine Rafidi Francisco Mercado III Michael Astudillo William H. D. Fry Matthew Saldana Kermit L. Carraway III Colleen Sweeney 《The Journal of biological chemistry》2013,288(30):21593-21605
Lrig1 is the founding member of the Lrig family of transmembrane leucine-rich repeat proteins, which also includes Lrig2 and Lrig3. Lrig1 is a negative regulator of oncogenic receptor tyrosine kinases, including ErbB and Met receptors, and promotes receptor degradation. Lrig1 has recently emerged as both a tumor suppressor and a key regulator of epidermal and epithelial stem cell quiescence. Despite this, little is known of the mechanisms by which Lrig1 is regulated. Lrig3 was recently reported to increase ErbB receptor expression suggesting that it may function in a manner opposite to Lrig1. In this study, we explore the interaction between Lrig1 and Lrig3 and demonstrate that Lrig1 and Lrig3 functionally oppose one another. Lrig3 opposes Lrig1 negative regulatory activity and stabilizes ErbB receptors. Conversely, Lrig1 destabilizes Lrig3, limiting Lrig3''s positive effects on receptors and identifying Lrig3 as a new target of Lrig1. These studies provide new insight into the regulation of Lrig1 and uncover a complex cross-talk between Lrig1 and Lrig3. 相似文献
10.
Maurice Perrinjaquet Mar?al Vilar Carlos F. Ibá?ez 《The Journal of biological chemistry》2010,285(41):31867-31875
The signaling mechanisms by which neurotrophic receptors regulate neuronal survival and axonal growth are still incompletely understood. In the receptor tyrosine kinase RET, a receptor for GDNF (glial cell line-derived neurotrophic factor), the functions of the majority of tyrosine residues that become phosphorylated are still unknown. Here we have identified the protein-tyrosine phosphatase SHP2 as a novel direct interactor of RET and the first effector known to bind to phosphorylated Tyr687 in the juxtamembrane region of the receptor. We show that SHP2 is recruited to RET upon ligand binding in a cooperative fashion, such that both interaction with Tyr687 and association with components of the Tyr1062 signaling complex are required for stable recruitment of SHP2 to the receptor. SHP2 recruitment contributes to the ability of RET to activate the PI3K/AKT pathway and promote survival and neurite outgrowth in primary neurons. Furthermore, we find that activation of protein kinase A (PKA) by forskolin reduces the recruitment of SHP2 to RET and negatively affects ligand-mediated neurite outgrowth. In agreement with this, mutation of Ser696, a known PKA phosphorylation site in RET, enhances SHP2 binding to the receptor and eliminates the effect of forskolin on ligand-induced outgrowth. Together, these findings establish SHP2 as a novel positive regulator of the neurotrophic activities of RET and reveal Tyr687 as a critical platform for integration of RET and PKA signals. We anticipate that several other phosphotyrosines of unknown function in neuronal receptor tyrosine kinases will also support similar regulatory functions. 相似文献
11.
Juergen M. Schanzer Katharina Wartha Rebecca Croasdale Samuel Moser Klaus-Peter Künkele Carola Ries Werner Scheuer Harald Duerr Sandra Pompiati Jan Pollman Jan Stracke Wilma Lau Stefan Ries Ulrich Brinkmann Christian Klein Pablo Umana 《The Journal of biological chemistry》2014,289(27):18693-18706
In the present study, we have developed a novel one-arm single chain Fab heterodimeric bispecific IgG (OAscFab-IgG) antibody format targeting the insulin-like growth factor receptor type I (IGF-1R) and the epidermal growth factor receptor (EGFR) with one binding site for each target antigen. The bispecific antibody XGFR is based on the “knob-into-hole” technology for heavy chain heterodimerization with one heavy chain consisting of a single chain Fab to prevent wrong pairing of light chains. XGFR was produced with high expression yields and showed simultaneous binding to IGF-1R and EGFR with high affinity. Due to monovalent binding of XGFR to IGF-1R, IGF-1R internalization was strongly reduced compared with the bivalent parental antibody, leading to enhanced Fc-mediated cellular cytotoxicity. To further increase immune effector functions triggered by XGFR, the Fc portion of the bispecific antibody was glycoengineered, which resulted in strong antibody-dependent cell-mediated cytotoxicity activity. XGFR-mediated inhibition of IGF-1R and EGFR phosphorylation as well as A549 tumor cell proliferation was highly effective and was comparable with a combined treatment with EGFR (GA201) and IGF-1R (R1507) antibodies. XGFR also demonstrated potent anti-tumor efficacy in multiple mouse xenograft tumor models with a complete growth inhibition of AsPC1 human pancreatic tumors and improved survival of SCID beige mice carrying A549 human lung tumors compared with treatment with antibodies targeting either IGF-1R or EGFR. In summary, we have applied rational antibody engineering technology to develop a heterodimeric OAscFab-IgG bispecific antibody, which combines potent signaling inhibition with antibody-dependent cell-mediated cytotoxicity induction and results in superior molecular properties over two established tetravalent bispecific formats. 相似文献
12.
Laura M. Breshears Patrick M. Schlievert Marnie L. Peterson 《The Journal of biological chemistry》2012,287(39):32578-32587
13.
Hyunjae Chung Rithwik Ramachandran Morley D. Hollenberg Daniel A. Muruve 《The Journal of biological chemistry》2013,288(52):37319-37331
Chronic kidney diseases cause significant morbidity and mortality in the population. During renal injury, kidney-localized proteinases can signal by cleaving and activating proteinase-activated receptor-2 (PAR2), a G-protein-coupled receptor involved in inflammation and fibrosis that is highly expressed in renal tubular cells. Following unilateral ureteric obstruction, PAR2-deficient mice displayed reduced renal tubular injury, fibrosis, collagen synthesis, connective tissue growth factor (CTGF), and α-smooth muscle actin gene expression at 7 days, compared with wild-type controls. In human proximal tubular epithelial cells in vitro, PAR2 stimulation with PAR2-activating peptide (PAR2-AP) alone significantly up-regulated the expression of CTGF, a potent profibrotic cytokine. The induction of CTGF by PAR2-AP was synergistically increased when combined with transforming growth factor-β (TGF-β). Consistent with these findings, treating human proximal tubular epithelial cells with PAR2-AP induced Smad2/3 phosphorylation in the canonical TGF-β signaling pathway. The Smad2 phosphorylation and CTGF induction required signaling via both the TGFβ-receptor and EGF receptor suggesting that PAR2 utilizes transactivation mechanisms to initiate fibrogenic signaling. Taken together, our data support the hypothesis that PAR2 synergizes with the TGFβ signaling pathway to contribute to renal injury and fibrosis. 相似文献
14.
15.
Pamuditha N. Silva Svetlana M. Altamentova Dawn M. Kilkenny Jonathan V. Rocheleau 《The Journal of biological chemistry》2013,288(24):17859-17870
FGFRL1 is a newly identified member of the fibroblast growth factor receptor (FGFR) family expressed in adult pancreas. Unlike canonical FGFRs that initiate signaling via tyrosine kinase domains, the short intracellular sequence of FGFRL1 consists of a putative Src homology domain-2 (SH2)-binding motif adjacent to a histidine-rich C terminus. As a consequence of nonexistent kinase domains, FGFRL1 has been postulated to act as a decoy receptor to inhibit canonical FGFR ligand-induced signaling. In pancreatic islet beta-cells, canonical FGFR1 signaling affects metabolism and insulin processing. This study determined beta-cell expression of FGFRL1 as well as consequent effects on FGFR1 signaling and biological responses. We confirmed FGFRL1 expression at the plasma membrane and within distinct intracellular granules of both primary beta-cells and βTC3 cells. Fluorescent protein-tagged FGFRL1 (RL1) induced a significant ligand-independent increase in MAPK signaling. Removal of the histidine-rich domain (RL1-ΔHis) or entire intracellular sequence (RL1-ΔC) resulted in greater retention at the plasma membrane and significantly reduced ligand-independent ERK1/2 responses. The SHP-1 phosphatase was identified as an RL1-binding substrate. Point mutation of the SH2-binding motif reduced the ability of FGFRL1 to bind SHP-1 and activate ERK1/2 but did not affect receptor localization to insulin secretory granules. Finally, overexpression of RL1 increased cellular insulin content and matrix adhesion. Overall, these data suggest that FGFRL1 does not function as a decoy receptor in beta-cells, but rather it enhances ERK1/2 signaling through association of SHP-1 with the receptor''s intracellular SH2-binding motif. 相似文献
16.
Ligand-induced internalization of the epidermal growth factor receptor (EGFR) is an important process for regulating signal transduction, cellular dynamics, and cell-cell communication. Here, we demonstrate that nonmuscle myosin II (NM II) is required for the internalization of the EGFR and to trigger the EGFR-dependent activation of ERK and AKT. The EGFR was identified as a protein that interacts with NM II by co-immunoprecipitation and mass spectrometry analysis. This interaction requires both the regulatory light chain 20 (RLC20) of NM II and the kinase domain of the EGFR. Two paralogs of NM II, NM II-A, and NM II-B can act to internalize the EGFR, depending on the cell type and paralog content of the cell line. Loss (siRNA) or inhibition (25 μm blebbistatin) of NM II attenuates the internalization of the EGFR and impairs EGFR-dependent activation of ERK and AKT. Both internalization of the EGFR and downstream signaling to ERK and AKT can be partially restored in siRNA-treated cells by introduction of wild type (WT) GFP-NM II, but cannot be restored by motor mutant NM II. Taken together, these results suggest that NM II plays a role in the internalization of the EGFR and EGFR-mediated signaling pathways. 相似文献
17.
Claire L. Cole Graham Rushton Gordon C. Jayson Egle Avizienyte 《The Journal of biological chemistry》2014,289(15):10488-10501
Heparan sulfate (HS) is a component of cell surface and extracellular matrix proteoglycans that regulates numerous signaling pathways by binding and activating multiple growth factors and chemokines. The amount and pattern of HS sulfation are key determinants for the assembly of the trimolecular, HS-growth factor-receptor, signaling complex. Here we demonstrate that HS 6-O-sulfotransferases 1 and 2 (HS6ST-1 and HS6ST-2), which perform sulfation at 6-O position in glucosamine in HS, impact ovarian cancer angiogenesis through the HS-dependent HB-EGF/EGFR axis that subsequently modulates the expression of multiple angiogenic cytokines. Down-regulation of HS6ST-1 or HS6ST-2 in human ovarian cancer cell lines results in 30–50% reduction in glucosamine 6-O-sulfate levels in HS, impairing HB-EGF-dependent EGFR signaling and diminishing FGF2, IL-6, and IL-8 mRNA and protein levels in cancer cells. These cancer cell-related changes reduce endothelial cell signaling and tubule formation in vitro. In vivo, the development of subcutaneous tumor nodules with reduced 6-O-sulfation is significantly delayed at the initial stages of tumor establishment with further reduction in angiogenesis occurring throughout tumor growth. Our results show that in addition to the critical role that 6-O-sulfate moieties play in angiogenic cytokine activation, HS 6-O-sulfation level, determined by the expression of HS6ST isoforms in ovarian cancer cells, is a major regulator of angiogenic program in ovarian cancer cells impacting HB-EGF signaling and subsequent expression of angiogenic cytokines by cancer cells. 相似文献
18.
19.
Masato Yano Naoyuki Kawao Katsumi Okumoto Yukinori Tamura Kiyotaka Okada Hiroshi Kaji 《The Journal of biological chemistry》2014,289(24):16966-16977
Fibrodysplasia ossificans progressiva is characterized by extensive ossification within muscle tissues, and its molecular pathogenesis is responsible for the constitutively activating mutation (R206H) of the bone morphogenetic protein type 1 receptor, activin-like kinase 2 (ALK2). In this study, we investigated the effects of implanting ALK2 (R206H)-transfected myoblastic C2C12 cells into nude mice on osteoclast formation during heterotopic ossification in muscle and subcutaneous tissues. The implantation of ALK2 (R206H)-transfected C2C12 cells with BMP-2 in nude mice induced robust heterotopic ossification with an increase in the formation of osteoclasts in muscle tissues but not in subcutaneous tissues. The implantation of ALK2 (R206H)-transfected C2C12 cells in muscle induced heterotopic ossification more effectively than that of empty vector-transfected cells. A co-culture of ALK2 (R206H)-transfected C2C12 cells as well as the conditioned medium from ALK2 (R206H)-transfected C2C12 cells enhanced osteoclast formation in Raw264.7 cells more effectively than those with empty vector-transfected cells. The transfection of ALK2 (R206H) into C2C12 cells elevated the expression of transforming growth factor (TGF)-β, whereas the inhibition of TGF-β signaling suppressed the enhanced formation of osteoclasts in the co-culture with ALK2 (R206H)-transfected C2C12 cells and their conditioned medium. In conclusion, this study demonstrated that the causal mutation transfection of fibrodysplasia ossificans progressiva in myoblasts enhanced the formation of osteoclasts from its precursor through TGF-β in muscle tissues. 相似文献
20.
Dopamine D2 receptor (D2R)-mediated extracellular signal-regulated kinase (ERK) activation plays an important role in the development of dopaminergic mesencephalic neurons. Here, we demonstrate that D2R induces the shedding of heparin-binding epidermal growth factor (EGF) through the activation of a disintegrin and metalloprotease (ADAM) 10 or 17, leading to EGF receptor transactivation, downstream ERK activation, and ultimately an increase in the number of dopaminergic neurons and their neurite length in primary mesencephalic cultures from wild-type mice. These outcomes, however, were not observed in cultures from D2R knock-out mice. Our findings show that D2R-mediated ERK activation regulates mesencephalic dopaminergic neuron development via EGF receptor transactivation through ADAM10/17. 相似文献