首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wnt/β-catenin signalling plays a key role in the homeostasis of the intestinal epithelium. Whereas its role in the maintenance of the stem cell compartment has been clearly demonstrated, its role in the Paneth cell fate remains unclear. We performed genetic studies to elucidate the functions of the Wnt/β-catenin pathway in Paneth cell differentiation. We analysed mice with inducible gain-of-function mutations in the Wnt/β-catenin pathway and mice with a hypomorphic β-catenin allele that have not been previously described. We demonstrated that acute activation of Wnt/β-catenin signalling induces de novo specification of Paneth cells in both the small intestine and colon and that colon cancers resulting from Apc mutations expressed many genes involved in Paneth cell differentiation. This suggests a key role for the Wnt/β-catenin pathway in Paneth cell differentiation. We also showed that a slight decrease in β-catenin gene dosage induced a major defect in Paneth cell differentiation, but only a modest effect on crypt morphogenesis. Overall, our findings show that a high level of β-catenin activation is required to determine Paneth cell fate and that fine tuning of β-catenin signalling is critical for correct Paneth cell lineage.  相似文献   

2.
3.
Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/β-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active β-catenin, two key members of the Wnt/β-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/β-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis.  相似文献   

4.
5.
6.
7.
Activation of the renin-angiotensin system (RAS) plays a pivotal role in mediating hypertension, chronic kidney and cardiovascular diseases. As Wnt/β-catenin regulates multiple RAS genes, we speculated that this developmental signaling pathway might also participate in blood pressure (BP) regulation. To test this, we utilized two rat models of experimental hypertension: chronic angiotensin II infusion and remnant kidney after 5/6 nephrectomy. Inhibition of Wnt/β-catenin by ICG-001 blunted angiotensin II-induced hypertension. Interestingly, angiotensin II was able to induce the expression of multiple Wnt genes in vivo and in vitro, thereby creating a vicious cycle between Wnt/β-catenin and RAS activation. In the remnant kidney model, renal β-catenin was upregulated, and delayed administration of ICG-001 also blunted BP elevation and abolished the induction of angiotensinogen, renin, angiotensin-converting enzyme and angiotensin II type 1 receptor. ICG-001 also reduced albuminuria, serum creatinine and blood urea nitrogen, and inhibited renal expression of fibronectin, collagen I and plasminogen activator inhibitor-1, and suppressed the infiltration of CD3+ T cells and CD68+ monocytes/macrophages. In vitro, incubation with losartan prevented Wnt/β-catenin-mediated fibronectin, α-smooth muscle actin and Snail1 expression, suggesting that the fibrogenic action of Wnt/β-catenin is dependent on RAS activation. Taken together, these results suggest an intrinsic linkage of Wnt/β-catenin signaling with BP regulation. Our studies also demonstrate that hyperactive Wnt/β-catenin can drive hypertension and kidney damage via RAS activation.  相似文献   

8.
The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in kidney organogenesis, little is known of the definitive downstream signaling pathway(s) that mediate their effects. Here we report that inhibition of Wnt/β-catenin signaling within the pronephric field of Xenopus results in significant losses to kidney epithelial tubulogenesis with little or no effect on adjoining axis or somite development. We find that the requirement for Wnt/β-catenin signaling extends throughout the pronephric primordium and is essential for the development of proximal and distal tubules of the pronephros as well as for the development of the duct and glomus. Although less pronounced than effects upon later pronephric tubule differentiation, inhibition of the Wnt/β-catenin pathway decreased expression of early pronephric mesenchymal markers indicating it is also needed in early pronephric patterning. We find that upstream inhibition of Wnt/β-catenin signals in zebrafish likewise reduces pronephric epithelial tubulogenesis. We also find that exogenous activation of Wnt/β-catenin signaling within the Xenopus pronephric field results in significant tubulogenic losses. Together, we propose Wnt/β-catenin signaling is required for pronephric tubule, duct and glomus formation in Xenopus laevis, and this requirement is conserved in zebrafish pronephric tubule formation.  相似文献   

9.
BackgroundMutations in desmosomal genes linked to arrhythmogenic cardiomyopathy are commonly associated with Wnt/β-catenin signaling abnormalities and reduction of the sodium current density. Inhibitors of GSK3B were reported to restore sodium current and improve heart function in various arrhythmogenic cardiomyopathy models, but mechanisms underlying this effect remain unclear. We hypothesized that there is a crosstalk between desmosomal proteins, signaling pathways, and cardiac sodium channels.Methods and resultsTo reveal molecular mechanisms of arrhythmogenic cardiomyopathy, we established human iPSC-based model of this pathology. iPSC-derived cardiomyocytes from patient carrying two genetic variants in PKP2 gene demonstrated that PKP2 haploinsufficiency due to frameshift variant, in combination with the missense variant expressed from the second allele, was associated with decreased Wnt/β-catenin activity and reduced sodium current. Different approaches were tested to restore impaired cardiomyocytes functions, including wild type PKP2 transduction, GSK3B inhibition and Wnt/β-catenin signaling modulation. Inhibition of GSK3B led to the restoration of both Wnt/β-catenin signaling activity and sodium current density in patient-specific cardiomyocytes while GSK3B activation led to the reduction of sodium current density. Moreover, we found that upon inhibition GSK3B sodium current was restored through Wnt/β-catenin-independent mechanism.ConclusionWe propose that alterations in GSK3B-Wnt/β-catenin signaling pathways lead to regulation of sodium current implying its role in molecular pathogenesis of arrhythmogenic cardiomyopathy.  相似文献   

10.
11.
12.
MicroRNA (miR)-19b is part of the miR-1792 cluster associated with cardiac development. Here, we investigated the effects of overexpressing miR-19b on proliferation, differentiation, apoptosis, and regulation of the Wnt/β-catenin signaling pathway in the multipotent murine P19 cell line that can be induced to undergo cardiogenesis. P19 cells were transfected with the miR-19b plasmid or empty vector, and miR-19b overexpression was verified by Quantitative Real-Time PCR (qPCR). The miR-19b or vector control stable cell lines were selected using Blasticidin S HCl, and their proliferation, cell cycle, and apoptosis levels were analyzed using the Cell Counting Kit-8 and flow cytometry. P19 cell differentiation markers, apoptosis-related genes (bax, bcl-2), and Wnt/β-catenin signaling pathway-related genes were detected by qPCR, the corresponding proteins by Western blot. Expression of the Wnt pathway and differentiation marker proteins was also verified by immunofluorescence. Morphological changes associated with apoptosis were observed by electron microscopy and Hoechst staining. On the basis of these results, we demonstrated that miR-19b overexpression promoted proliferation and differentiation but inhibited apoptosis in P19 cells; Wnt and β-catenin expressions were decreased, while that of GSK3β was increased with miR-19b overexpression. Overexpression of miR-19b inhibited activation of the Wnt/β-catenin signaling pathway in P19 cells, which may regulate cardiomyocyte differentiation. Our findings may bring new insights into the mechanisms underlying cardiac diseases and suggest that miR-19b is a potential new therapeutic target for cardiovascular diseases.  相似文献   

13.
14.
Bilobalide, a natural product extracted from Ginkgo biloba leaf, is known to exhibit a number of pharmacological activities. So far, whether it could affect embryonic stem cell differentiation is still unknown. The main aim of this study was to investigate the effect of bilobalide on P19 embryonic carcinoma cells differentiation and the underlying mechanisms. Our results showed that bilobalide induced P19 cells differentiation into neurons in a concentration- and time-dependent manner. We also found that bilobalide promoted neuronal differentiation through activation of Wnt/β-catenin signaling pathway. Exposure to bilobalide increased inactive GSK-3β phosphorylation, further induced the nuclear accumulation of β-catenin, and also up-regulated the expression of Wnt ligands Wnt1 and Wnt7a. Neuronal differentiation induced by bilobalide was totally abolished by XAV939, an inhibitor of Wnt/β-catenin pathway. These results revealed a novel role of bilobalide in neuronal differentiation from P19 embryonic cells acting through Wnt/β-catenin signaling pathway, which would provide a better insight into the beneficial effects of bilobalide in brain diseases.  相似文献   

15.
T helper cell 17 (Th17), one type of CD4+ T cell, plays an important role in regulating the acute lung injury (ALI) inflammatory response. Recent studies showed that Wnt/β-catenin pathway could modulate the differentiation and the function of CD4+ T cell. However, whether Wnt/β-catenin could regulate the differentiation and function of Th17 in the development and progress of ALI induced by lipopolysaccharide (LPS) is still unknown. To test this, we used dickkopf1 (Dkk-1) to block the Wnt/β-catenin pathway and LiCl to activate the Wnt/β-catenin pathway by instillation to the murine model of ALI. Our results revealed that activation of Wnt/β-catenin pathway significantly aggravated the LPS-induced lung inflammation. Meanwhile, we observed that activation of Wnt/β-catenin pathway promoted Th17 response by analyzing CD4+ T cells and the related cytokines secretions. Enhanced Th17 response was responsible for the further neutrophils infiltration and pro-inflammatory cytokines production. In addition, activation of Wnt/β-catenin pathway resulted in induced expression of retinoic acid related orphan receptor-γt (RORγt) via histone acetyltransferase p300. These data suggested that Wnt/β-catenin pathway might be a potential target to treat the LPS-induced inflammation in ALI.  相似文献   

16.
Endochondral ossification is an essential step for skeletal development, which requires chondrocyte differentiation in growth cartilage. The low-density lipoprotein receptor-related protein 4 (LRP4), a member of LDLR family, is an inhibitor for Wnt signaling, but its roles in chondrocyte differentiation remain to be investigated. Here we found by laser capture microdissection that LRP4 expression was induced during chondrocyte differentiation in growth plate. In order to address the roles, we overexpressed recombinant human LRP4 or knocked down endogenous LRP4 by lentivirus in mouse ATDC5 chondrocyte cells. We found that LRP4 induced gene expressions of extracellular matrix proteins of type II collagen (Col2a1), aggrecan (Acan), and type X collagen (Col10a1), as well as production of total proteoglycans in ATDC5 cells, whereas LRP4 knockdown had opposite effects. Interestingly, LRP4-knockdown reduced mRNA expression of Sox9, a master regulator for chondrogenesis, as well as Dkk1, an extracellular Wnt inhibitor. Analysis of Wnt signaling revealed that LRP4 blocked the Wnt/β-catenin signaling activity in ATDC5 cells. Finally, the reduction of these extracellular matrix productions by LRP4-knockdown was rescued by a β-catenin/TCF inhibitor, suggesting that LRP4 is an important regulator for extracellular matrix productions and chondrocyte differentiation by suppressing Wnt/β-catenin signaling.  相似文献   

17.
18.
19.
The regulation of intracellular β-catenin levels is central in the Wnt/β-catenin signaling cascade and the activation of the Wnt target genes. Here, we show that homeodomain-interacting protein kinase 2 (HIPK2) acts as a negative regulator of the Wnt/β-catenin pathway. Knock-down of endogenous HIPK2 increases the stability of β-catenin and results in the accumulation of β-catenin in the nucleus, consequently enhancing the expression of Wnt target genes and cell proliferation both in vivo and in cultured cells. HIPK2 inhibits TCF/LEF-mediated target gene activation via degradation of β-catenin. HIPK2 phosphorylates β-catenin at its Ser33 and Ser37 residues without the aid of a priming kinase. Substitutions of Ser33 and Ser37 for alanines abolished the degradation of β-catenin associated with HIPK2. In ex vivo mouse model, HIPK2 knock-down resulted in accumulation of β-catenin, thereby potentiated β-catenin-mediated cell proliferation and tumor formation. Furthermore, the axis duplication induced by the ectopic expression of β-catenin was blocked by co-injection of HIPK2 mRNAs into Xenopus embryos. Taken together, HIPK2 appears to function as a novel negative regulator of β-catenin through its phosphorylation and proteasomal degradation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号