首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mus dunni endogenous virus (MDEV) can be activated from M. dunni cells by exposing the cells to hydrocortisone or 5-iodo-2′-deoxyuridine. Interference analysis has revealed that MDEV uses a receptor for cell entry that is different from those used by other murine retroviruses. The entire genome has now been sequenced, revealing a long terminal repeat (LTR)-gag-pol-env-LTR structure typical of simple retroviruses of the murine leukemia virus genus, with no additional open reading frames between env and the 3′ LTR. The LTRs and other noncoding regions of MDEV are most closely related to those of VL30 elements, while the majority of the coding sequences are most closely related to those of gibbon ape leukemia virus. MDEV represents the first example of a naturally occurring, replication-competent virus with sequences closely related to VL30 elements. The U3 region of MDEV contains six nearly perfect 80-bp repeats and the beginning of a seventh, and the region expected to contain the packaging sequence contains approximately four imperfect 33-bp repeats. The receptor specificity domains of the envelope are unique among retroviruses and show no apparent similarity to regions of known proteins.  相似文献   

2.
Analysis of a cat genomic DNA library showed that cats harbor a previously unrecognized endogenous type C retrovirus, whose env gene has homology to the murine Fv-4 resistance gene. This unique retrovirus, designated FcEV (Felis catus endogenous retrovirus), has a type C pol gene, closely related to the primate Papio cynocephalus endogenous virus (PcEV) pol, not overlapping the env gene, unlike in other type C retroviruses, and is presumably present in a higher copy number than RD-114. Phylogenetic analysis of FcEV and RD-114 fragments amplified from cat species and comparison with baboon endogenous virus (BaEV) fragments from monkeys suggested that RD-114 does not represent the cat strain of BaEV but is actually a new recombinant between FcEV type C genes and the env gene of BaEV. Although BaEV did appear to have infected an ancestor of the domestic cat lineage, it was a de novo recombinant that made its way into the cat germ line.  相似文献   

3.
Friend spleen focus-forming virus (F-SFFV) is a replication-defective acutely leukemogenic mouse retrovirus and encodes an envelope protein (Env)-like membrane glycoprotein (gp55) in its defective env gene, which is responsible for the early stage of the viral leukemogenesis. Gp55 is a modified Env protein and contains a polytropic mink cell focus-inducing (MCF) murine leukemia virus (MuLV) Env gp70-derived sequence in its amino-terminal region. To evaluate the possibility that the presumed binding of gp55 to an MCF MuLV receptor protein has some role in leukemogenesis, we examined the biological activities of a mutant gp55 (XE gp55), which has a xenotropic MuLV Env gp70 amino-terminal region. XE gp55 displayed almost the same biological activities as the wild-type gp55, excluding the above possibility.  相似文献   

4.
Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of porcine reproductive and respiratory syndrome (PRRS), which can evolve continuously by random mutation or intragenic recombination. Here we report the complete genomic sequence of a PRRSV variant with nucleotide acid deletions and insertions in the nonstructural protein 2 (nsp2) gene and a possible recombination event between a modified live virus (MLV) vaccine strain and a prototype Chinese field strain.  相似文献   

5.
Intracisternal type A particles are retrovirus-like structures found in embryonic cells and many tumors of Mus musculus but having no clear relationship with other retroviruses of this mouse species. We have observed a partial nucleotide sequence homology between the high-molecular-weight (32S and 35S) RNA components of intracisternal A-particles from a neuroblastoma cell line and the 70S RNA fraction from M432, a type of retrovirus endogenous to the Asian mouse Mus cervicolor. M432 complementary DNA (cDNA) was hybridized to the extent of 30% by the A-particle RNAs. The hybrids showed a lower thermal stability (DeltaT(m), 7 degrees C) than those formed with homologous RNA. The reaction was commensurate with that found between M432 cDNA and divergent sequences in the M. musculus genome. The capacity to hybridize M432 cDNA was closely correlated with the concentration of A-particle sequences in the cytoplasmic RNA of several M. musculus cell types. The major RNA fraction of M432 virus showed a reciprocal partial reaction with the A-particle cDNA's; the virus, which was grown in NIH/3T3 (M. musculus) cells, also contained a small proportion of apparently authentic A-particle nucleotide sequences. A subset of A-particle sequences seemed to be almost totally lacking in the main M432 RNA. The A-particle cDNA's hybridized extensively with divergent sequences in M. cervicolor cellular DNA, indicating that this mouse species may contain not only the partially homologous M432 virogene, but also a more complete genetic equivalent of the intracisternal A-particle.  相似文献   

6.
7.
Wolbachia is a maternally transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce pathogen interference and spread into mosquito vector populations makes it possible to develop Wolbachia as a biological control agent for vector-borne disease control. Although Wolbachia induces resistance to dengue virus (DENV), filarial worms, and Plasmodium in mosquitoes, species like Aedes polynesiensis and Aedes albopictus, which carry native Wolbachia infections, are able to transmit dengue and filariasis. In a previous study, the native wPolA in Ae. polynesiensis was replaced with wAlbB from Ae. albopictus, and resulted in the generation of the transinfected “MTB” strain with low susceptibility for filarial worms. In this study, we compare the dynamics of DENV serotype 2 (DENV-2) within the wild type “APM” strain and the MTB strain of Ae. polynesiensis by measuring viral infection in the mosquito whole body, midgut, head, and saliva at different time points post infection. The results show that wAlbB can induce a strong resistance to DENV-2 in the MTB mosquito. Evidence also supports that this resistance is related to a dramatic increase in Wolbachia density in the MTB''s somatic tissues, including the midgut and salivary gland. Our results suggests that replacement of a native Wolbachia with a novel infection could serve as a strategy for developing a Wolbachia-based approach to target naturally infected insects for vector-borne disease control.  相似文献   

8.
The maintenance of endoplasmic reticulum (ER) homeostasis is a critical aspect of determining cell fate and requires a properly functioning unfolded protein response (UPR). We have discovered a previously unknown role of a post-translational modification termed adenylylation/AMPylation in regulating signal transduction events during UPR induction. A family of enzymes, defined by the presence of a Fic (filamentation induced by cAMP) domain, catalyzes this adenylylation reaction. The human genome encodes a single Fic protein, called HYPE (Huntingtin yeast interacting protein E), with adenylyltransferase activity but unknown physiological target(s). Here, we demonstrate that HYPE localizes to the lumen of the endoplasmic reticulum via its hydrophobic N terminus and adenylylates the ER molecular chaperone, BiP, at Ser-365 and Thr-366. BiP functions as a sentinel for protein misfolding and maintains ER homeostasis. We found that adenylylation enhances BiP''s ATPase activity, which is required for refolding misfolded proteins while coping with ER stress. Accordingly, HYPE expression levels increase upon stress. Furthermore, siRNA-mediated knockdown of HYPE prevents the induction of an unfolded protein response. Thus, we identify HYPE as a new UPR regulator and provide the first functional data for Fic-mediated adenylylation in mammalian signaling.  相似文献   

9.
10.
Microbial infection urges prompt intervention by the immune system. The complement cascade and neutrophil granulocytes are the predominant contributors to this immediate anti-microbial action. We have previously shown that mannan-binding lectin-associated serine protease-1 (MASP-1), the most abundant enzyme of the complement lectin pathway, can induce p38-MAPK activation, NFkappaB signaling, and Ca2+-mobilization in endothelial cells. Since neutrophil chemotaxis and transmigration depends on endothelial cell activation, we aimed to explore whether recombinant MASP-1 (rMASP-1) is able to induce cytokine production and subsequent neutrophil chemotaxis in human umbilical vein endothelial cells (HUVEC). We found that HUVECs activated by rMASP-1 secreted IL-6 and IL-8, but not IL-1alpha, IL-1ra, TNFalpha and MCP-1. rMASP-1 induced dose-dependent IL-6 and IL-8 production with different kinetics. rMASP-1 triggered IL-6 and IL-8 production was regulated predominantly by the p38-MAPK pathway. Moreover, the supernatant of rMASP-1-stimulated HUVECs activated the chemotaxis of neutrophil granulocytes as an integrated effect of cytokine production. Our results implicate that besides initializing the complement lectin pathway, MASP-1 may activate neutrophils indirectly, via the endothelial cells, which link these effective antimicrobial host defense mechanisms.  相似文献   

11.
Serum amyloid A (SAA) is a major acute phase protein involved in multiple physiological and pathological processes. This study provides experimental evidence that CD36, a phagocyte class B scavenger receptor, functions as a novel SAA receptor mediating SAA proinflammatory activity. The uptake of Alexa Fluor® 488 SAA as well as of other well established CD36 ligands was increased 5–10-fold in HeLa cells stably transfected with CD36 when compared with mock-transfected cells. Unlike other apolipoproteins that bind to CD36, only SAA induced a 10–50-fold increase of interleukin-8 secretion in CD36-overexpressing HEK293 cells when compared with control cells. SAA-mediated effects were thermolabile, inhibitable by anti-SAA antibody, and also neutralized by association with high density lipoprotein but not by association with bovine serum albumin. SAA-induced cell activation was inhibited by a CD36 peptide based on the CD36 hexarelin-binding site but not by a peptide based on the thrombospondin-1-binding site. A pronounced reduction (up to 60–75%) of SAA-induced pro-inflammatory cytokine secretion was observed in cd36−/− rat macrophages and Kupffer cells when compared with wild type rat cells. The results of the MAPK phosphorylation assay as well as of the studies with NF-κB and MAPK inhibitors revealed that two MAPKs, JNK and to a lesser extent ERK1/2, primarily contribute to elevated cytokine production in CD36-overexpressing HEK293 cells. In macrophages, four signaling pathways involving NF-κB and three MAPKs all appeared to contribute to SAA-induced cytokine release. These observations indicate that CD36 is a receptor mediating SAA binding and SAA-induced pro-inflammatory cytokine secretion predominantly through JNK- and ERK1/2-mediated signaling.  相似文献   

12.

Background

Illness associated with Respiratory Syncytial Virus (RSV) remains an unmet medical need in both full-term infants and older adults. The fusion glycoprotein (F) of RSV, which plays a key role in RSV infection and is a target of neutralizing antibodies, is an attractive vaccine target for inducing RSV-specific immunity.

Methodology and Principal Findings

BALB/c mice and cotton rats, two well-characterized rodent models of RSV infection, were used to evaluate the immunogenicity of intramuscularly administered RSV vaccine candidates consisting of purified soluble F (sF) protein formulated with TLR4 agonist glucopyranosyl lipid A (GLA), stable emulsion (SE), GLA-SE, or alum adjuvants. Protection from RSV challenge, serum RSV neutralizing responses, and anti-F IgG responses were induced by all of the tested adjuvanted RSV sF vaccine formulations. However, only RSV sF + GLA-SE induced robust F-specific TH1-biased humoral and cellular responses. In mice, these F-specific cellular responses include both CD4 and CD8 T cells, with F-specific polyfunctional CD8 T cells that traffic to the mouse lung following RSV challenge. This RSV sF + GLA-SE vaccine formulation can also induce robust RSV neutralizing titers and prime IFNγ-producing T cell responses in Sprague Dawley rats.

Conclusions/Significance

These studies indicate that a protein subunit vaccine consisting of RSV sF + GLA-SE can induce robust neutralizing antibody and T cell responses to RSV, enhancing viral clearance via a TH1 immune-mediated mechanism. This vaccine may benefit older populations at risk for RSV disease.  相似文献   

13.
Aberrant epigenetic events contribute to tumorigenesis of all human cancers. Significant efforts are underway in developing new generation of epigenetic cancer therapeutics. Although clinical trials for agents targeting DNA hypermethylation and histone deacetylation have yielded promising results, developing agents that target histone methylation remains to be in the early stage. We and others have previously reported that 3-Deazaneplanocin A (DZNep) is a histone methylation inhibitor that has a wide range of anticancer effects in various human cancers. Here, focusing on acute myeloid leukemia (AML) as a model, we reported a less toxic analog of DZNep, named D9, which is shown to be efficacious in AML cell lines and patient-derived samples in vitro, as well as AML tumorigenesis in vivo. Gene expression analysis in a panel of AML cell lines treated with D9 identified a set of genes that is associated with D9 sensitivity and implicated in multiple oncogenic signaling pathways. Moreover, we show that D9 is able to deplete the leukemia stem cells (LSC) and abolish chemotherapy-induced LSC enrichment, leading to dramatic elimination of AML cell survival. Thus, D9 appears to be a robust epigenetic compound that may constitute a potential for AML therapy.  相似文献   

14.
Universal infantile hepatitis B virus (HBV) vaccination may lead to an increase in vaccine escape variants, which may pose a threat to the long-term success of massive vaccination. To determine the prevalence of occult infections in Korean vaccinated individuals, 87 vaccinated subjects were screened for the presence of HBV DNA using both the nested PCR protocol and the VERSANT HBV DNA 3.0 assay. The mutation patterns of variants were analyzed in full-length HBV genome sequences. Their HBsAg secretion and replication capacities were investigated using both in vitro transient transfection and in vivo hydrodynamic injection. The presence of HBV DNA was confirmed in 6 subjects (6.9%). All six variants had a common mutation type (X8Del) composed of an 8-bp deletion in the C-terminal region of the HBV X gene (HBxAg). Our in vitro and in vivo analyses using the full-length HBV genome indicated that the X8Del HBxAg variant reduced the secretion of HBsAg and HBV virions compared to the wild type. In conclusion, our data suggest that a novel mutation (X8Del) may contribute to occult HBV infection in Korean vaccinated individuals via a reduced secretion of HBsAg and virions, possibly by compromising HBxAg’s transacting capacity.  相似文献   

15.
A potential p120 GTPase-activating protein (RasGAP) effector, G3BP (RasGAP Src homology 3 [SH3] binding protein), was previously identified based on its ability to bind the SH3 domain of RasGAP. Here we show that G3BP colocalizes and physically interacts with RasGAP at the plasma membrane of serum-stimulated but not quiescent Chinese hamster lung fibroblasts. In quiescent cells, G3BP was hyperphosphorylated on serine residues, and this modification was essential for its activity. Indeed, G3BP harbors a phosphorylation-dependent RNase activity which specifically cleaves the 3′-untranslated region of human c-myc mRNA. The endoribonuclease activity of G3BP can initiate mRNA degradation and therefore represents a link between a RasGAP-mediated signaling pathway and RNA turnover.  相似文献   

16.
Interspecies hybridisation in nature is a well-studied phenomenon, but it has not been analysed using genetic markers in the class Chondrichthyes (sharks, rays and chimeras). Two black-tip whaler shark species (Australian, Carcharhinus tilstoni; Common, C. limbatus) have overlapping distributions in Australia, distinct mitochondrial DNA sequence (ND4, COI, control region) and distinct morphological features such as length at sexual maturity, length at birth and number of vertebrae. A mismatch was observed between species identification using mtDNA sequence and species identification using morphological characters. To test whether hybridisation between the two species was responsible, a nuclear gene with species-specific mutations was sequenced. Extensive interspecies hybridisation was found to be occurring. Hybrids were found from five locations on the eastern Australian coastline, spanning 2,000 km. If hybrid fitness is low and hybrids are common, then fisheries recruitment may be overestimated and the productivity of the black-tip shark fishery may be well below that required to support commercial exploitation. To guard against identification errors, the likelihood of hybridisation and subsequent introgression should be assessed prior to using mtDNA (e.g. barcoding) to identify shark species. The C. limbatusC. tilstoni species complex provides a unique opportunity to investigate the ability of sharks to adapt to environmental change, in particular, the impact of hybridization on species distributions which favour C. tilstoni along the north and C. limbatus along the south eastern Australian coastline.  相似文献   

17.
Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci –QTL– analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species.  相似文献   

18.

Background

Chronic inflammation of the arterial wall is a key element in the pathogenesis of atherosclerosis, yet the factors that trigger and sustain the inflammation remain elusive. Inflammasomes are cytoplasmic caspase-1-activating protein complexes that promote maturation and secretion of the proinflammatory cytokines interleukin(IL)-1β and IL-18. The most intensively studied inflammasome, NLRP3 inflammasome, is activated by diverse substances, including crystalline and particulate materials. As cholesterol crystals are abundant in atherosclerotic lesions, and IL-1β has been linked to atherogenesis, we explored the possibility that cholesterol crystals promote inflammation by activating the inflammasome pathway.

Principal Findings

Here we show that human macrophages avidly phagocytose cholesterol crystals and store the ingested cholesterol as cholesteryl esters. Importantly, cholesterol crystals induced dose-dependent secretion of mature IL-1β from human monocytes and macrophages. The cholesterol crystal-induced secretion of IL-1β was caspase-1-dependent, suggesting the involvement of an inflammasome-mediated pathway. Silencing of the NLRP3 receptor, the crucial component in NLRP3 inflammasome, completely abolished crystal-induced IL-1β secretion, thus identifying NLRP3 inflammasome as the cholesterol crystal-responsive element in macrophages. The crystals were shown to induce leakage of the lysosomal protease cathepsin B into the cytoplasm and inhibition of this enzyme reduced cholesterol crystal-induced IL-1β secretion, suggesting that NLRP3 inflammasome activation occurred via lysosomal destabilization.

Conclusions

The cholesterol crystal-induced inflammasome activation in macrophages may represent an important link between cholesterol metabolism and inflammation in atherosclerotic lesions.  相似文献   

19.
《Endocrine practice》2011,17(1):99-103
ObjectiveTo report a case of congenital adrenal hyperplasia due to CYP17 deficiency caused by a novel CYP17A1 mutation.MethodsWe describe the clinical, biochemical, genetic, and radiologic findings of a sporadic case of congenital adrenal hyperplasia due to CYP17 deficiency in a young patient.ResultsAn 18-year-old woman presented with hypogonadism and progressive muscle weakness and had not yet undergone thelarche, adrenarche, and menarche. Blood pressure was 155/90 mm Hg, she had no axillary or pubic hair, breasts were Tanner stage 1, and female genitalia were Tanner stage 1. Further laboratory studies showed hypokalemia with metabolic alkalosis, hypergonadotropic hypogonadism, a 46,XY karyotype, a low 17-hydroxyprogesterone level, and a high deoxycorticosterone level. Sequencing of the CYP17A1 gene demonstrated homozygous transversion of cytosine to adenine (TCAàTAA) in exon 5, which causes a premature stop codon at position 288 (Ser288X). Imaging studies showed large adrenal glands, cystic picture in the inguinal canal (suggestive of intra-abdominal testes), and absent Müllerian structures. Exploratory laparotomy was performed to remove the remaining gonads, and the final histologic examination showed atrophic testes.ConclusionsCongenital adrenal hyperplasia due to CYP17 deficiency should be suspected in patients with hypertension, hypokalemic alkalosis, and hypogonadism. In such cases, it is mandatory to assess the karyotype and perform hormonal and molecular genetic studies. (Endocr Pract. 2011;17:99-103)  相似文献   

20.
Invasive species often display different patterns of parasite burden and virulence compared to their native counterparts. These differences may be the result of variability in host-parasite co-evolutionary relationships, the occurrence of novel host-parasite encounters, or possibly innate differences in physiological responses to infection between invasive and native hosts. Here we examine the adaptive, humoral immune responses of a resistant, native bird and a susceptible, invasive bird to an arbovirus (Buggy Creek virus; Togaviridae: Alphavirus) and its ectoparasitic arthropod vector (the swallow bug; Oeciacus vicarius). Swallow bugs parasitize the native, colonially nesting cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that occupies nests in cliff swallow colonies. We measured levels of BCRV-specific and swallow bug-specific IgY levels before nesting (prior to swallow bug exposure) and after nesting (after swallow bug exposure) in house sparrows and cliff swallows in western Nebraska. Levels of BCRV-specific IgY increased significantly following nesting in the house sparrow but not in the cliff swallow. Additionally, house sparrows displayed consistently higher levels of swallow bug-specific antibodies both before and after nesting compared to cliff swallows. The higher levels of BCRV and swallow bug specific antibodies detected in house sparrows may be reflective of significant differences in both antiviral and anti-ectoparasite immune responses that exist between these two avian species. To our knowledge, this is the first study to compare the macro- and microparasite-specific immune responses of an invasive and a native avian host exposed to the same parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号