首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Obesity is a global health problem that is often related to cardiovascular and metabolic diseases. Chronic low-grade inflammation in white adipose tissue (WAT) is a hallmark of obesity. Previously, during a search for differentially expressed genes in WAT of obese mice, we identified glycoprotein nonmetastatic melanoma protein B (GPNMB), of which expression was robustly induced in pathologically expanded WAT. Here, we investigated the role of GPNMB in obesity-related metabolic disorders utilizing GPNMB-deficient mice. When fed a high-fat diet (HFD), GPNMB-deficient mice showed body weight and adiposity similar to those of wild-type (WT) mice. Nonetheless, insulin and glucose tolerance tests revealed significant obesity-related metabolic disorders in GPNMB-KO mice compared with WT mice fed with HFD. Chronic WAT inflammation was remarkably worsened in HFD-fed GPNMB-KO mice, accompanied by a striking increase in crown-like structures, typical hallmarks for diseased WAT. Macrophages isolated from GPNMB-KO mice were observed to produce more inflammatory cytokines than those of WT mice, a difference abolished by supplementation with recombinant soluble GPNMB extracellular domain. We demonstrated that GPNMB reduced the inflammatory capacity of macrophages by inhibiting NF-κB signaling largely through binding to CD44. Finally, we showed that macrophage depletion by addition of clodronate liposomes abolished the worsened WAT inflammation and abrogated the exacerbation of metabolic disorders in GPNMB-deficient mice fed on HFD. Our data reveal that GPNMB negatively regulates macrophage inflammatory capacities and ameliorates the WAT inflammation in obesity; therefore we conclude that GPNMB is a promising therapeutic target for the treatment of metabolic disorders associated with obesity.  相似文献   

3.
4.
White (WAT) and brown (BAT) adipose tissue, the two main types of adipose organ, are responsible for lipid storage and non-shivering thermogenesis, respectively. Thermogenesis is a process mediated by mitochondrial uncoupling protein 1 (UCP1) which uncouples oxidative phosphorylation from ATP production, leading to the conversion of free fatty acids to heat. This process can be triggered by exposure to low ambient temperatures, caloric excess, and the immune system. Recently mitochondrial thermogenesis has also been associated with plasma lipoprotein transport system. Specifically, apolipoprotein (APO) E3 is shown to have a bimodal effect on WAT thermogenesis that is highly dependent on its site of expression. Similarly, APOE2 and APOE4 differentially affect BAT and WAT mitochondrial metabolic activity in processes highly modulated by APOA1. Furthermore, the absence of classical APOA1 containing HDL (APOA1-HDL), is associated with no measurable non-shivering thermogenesis in WAT of mice fed high fat diet. Based on these previous observations which indicate important regulatory roles for both APOA1 and APOE in adipose tissue mitochondrial metabolic activity, here we sought to investigate the potential roles of these apolipoproteins in BAT and WAT metabolic activation in mice, following stimulation by cold exposure (7 °C). Our data indicate that APOA1-HDL promotes metabolic activation of BAT only in the presence of very low levels (virtually undetectable) of APOE3-containing HDL (APOE3-HDL), which acts as an inhibitor in this process. In contrast, induction of WAT thermogenesis is subjected to a more complicated regulation which requires the combined presence of both APOA1-HDL and APOE3-HDL.  相似文献   

5.
The three known subtypes of beta-adrenoreceptors (beta(1)-AR, beta(2)-AR, and beta(3)-AR) are differentially expressed in brown and white adipose tissue and mediate peripheral responses to central modulation of sympathetic outflow by leptin. To assess the relative roles of the beta-AR subtypes in mediating leptin's effects on adipocyte gene expression, mice with a targeted disruption of the beta(3)-adrenoreceptor gene (beta(3)-AR KO) were treated with vehicle or the beta(1)/beta(2)-AR selective antagonist, propranolol (20 microgram/g body weight/day) prior to intracerebroventricular (ICV) injections of leptin (0.1 microgram/g body weight/day). Leptin produced a 3-fold increase in UCP1 mRNA in brown adipose tissue of wild type (FVB/NJ) and beta(3)-AR KO mice. The response was unaltered by propranolol in wild type mice, but was completely blocked by this antagonist in beta(3)-AR KO mice. In contrast, ICV leptin had no effect on leptin mRNA in either epididymal or retroperitoneal white adipose tissue (WAT) from beta(3)-AR KOs. Moreover, propranolol did not block the ability of exogenous leptin to reduce leptin mRNA in either WAT depot site of wild type mice. These results demonstrate that the beta(3)-AR is required for leptin-mediated regulation of ob mRNA expression in WAT, but is interchangeable with the beta(1)/beta(2)-ARs in mediating leptin's effect on UCP1 mRNA expression in brown adipose tissue.  相似文献   

6.
Mitochondrial uncoupling protein 1 (UCP1) is usually expressed only in brown adipose tissue (BAT) and a key molecule for metabolic thermogenesis to avoid an excess of fat accumulation. However, there is little BAT in adult humans. Therefore, UCP1 expression in tissues other than BAT is expected to reduce abdominal fat. Here, we show reduction of abdominal white adipose tissue (WAT) weights in rats and mice by feeding lipids from edible seaweed, Undaria pinnatifida. Clear signals of UCP1 protein and mRNA were detected in WAT of mice fed the Undaria lipids, although there is little expression of UCP1 in WAT of mice fed control diet. The Undaria lipids mainly consisted of glycolipids and seaweed carotenoid, fucoxanthin. In the fucoxanthin-fed mice, WAT weight significantly decreased and UCP1 was clearly expressed in the WAT, while there was no difference in WAT weight and little expression of UCP1 in the glycolipids-fed mice. This result indicates that fucoxanthin upregulates the expression of UCP1 in WAT, which may contribute to reducing WAT weight.  相似文献   

7.
8.
Organ functions are altered and impaired during aging, thereby resulting in increased morbidity of age-related diseases such as Alzheimer’s disease, diabetes, and heart failure in the elderly. Angiogenesis plays a crucial role in the maintenance of tissue homeostasis, and aging is known to reduce the angiogenic capacity in many tissues. Here, we report the differential effects of aging on the expression of angiogenic factors in different tissues, representing a potentially causes for age-related metabolic disorders. PCR-array analysis revealed that many of angiogenic genes were down-regulated in the white adipose tissue (WAT) of aged mice, whereas they were largely up-regulated in the skeletal muscle (SM) of aged mice compared to that in young mice. Consistently, blood vessel density was substantially reduced and hypoxia was exacerbated in WAT of aged mice compared to that in young mice. In contrast, blood vessel density in SM of aged mice was well preserved and was not different from that in young mice. Moreover, we identified that endoplasmic reticulum (ER) stress was strongly induced in both WAT and SM during aging in vivo. We also found that ER stress significantly reduced the expression of angiogenic genes in 3T3-L1 adipocytes, whereas it increased their expression in C2C12 myotubes in vitro. These results collectively indicate that aging differentially affects the expression of angiogenic genes in different tissues, and that aging-associated down-regulation of angiogenic genes in WAT, at least in part through ER stress, is potentially involved in the age-related adipose tissue dysfunction.  相似文献   

9.
Insulin resistance (IR) underlies metabolic disease. Visceral, but not subcutaneous, white adipose tissue (WAT) has been linked to the development of IR, potentially due to differences in regulatory protein abundance. Here we investigate how protein levels are changed in IR in different WAT depots by developing a targeted proteomics approach to quantitatively compare the abundance of 42 nuclear proteins in subcutaneous and visceral WAT from a commonly used insulin-resistant mouse model, Lepr(db/db), and from C57BL/6J control mice. The most differentially expressed proteins were important in adipogenesis, as confirmed by siRNA-mediated depletion experiments, suggesting a defect in adipogenesis in visceral, but not subcutaneous, insulin-resistant WAT. Furthermore, differentiation of visceral, but not subcutaneous, insulin-resistant stromal vascular cells (SVCs) was impaired. In an in vitro approach to understand the cause of this impaired differentiation, we compared insulin-resistant visceral SVCs to preadipocyte cell culture models made insulin resistant by different stimuli. The insulin-resistant visceral SVC protein abundance profile correlated most with preadipocyte cell culture cells treated with both palmitate and TNFα. Together, our study introduces a method to simultaneously measure and quantitatively compare nuclear protein expression patterns in primary adipose tissue and adipocyte cell cultures, which we show can reveal relationships between differentiation and disease states of different adipocyte tissue types.  相似文献   

10.
Although interleukin (IL)-7 is mostly known as a key regulator of lymphocyte homeostasis, we recently demonstrated that it also contributes to body weight regulation through a hypothalamic control. Previous studies have shown that IL-7 is produced by the human obese white adipose tissue (WAT) yet its potential role on WAT development and function in obesity remains unknown. Here, we first show that transgenic mice overexpressing IL-7 have reduced adipose tissue mass associated with glucose and insulin resistance. Moreover, in the high-fat diet (HFD)-induced obesity model, a single administration of IL-7 to C57BL/6 mice is sufficient to prevent HFD-induced WAT mass increase and glucose intolerance. This metabolic protective effect is accompanied by a significant decreased inflammation in WAT. In lymphocyte-deficient HFD-fed SCID mice, IL-7 injection still protects from WAT mass gain. However, IL-7-triggered resistance against WAT inflammation and glucose intolerance is lost in SCID mice. These results suggest that IL-7 regulates adipose tissue mass through a lymphocyte-independent mechanism while its protective role on glucose homeostasis would be relayed by immune cells that participate to WAT inflammation. Our observations establish a key role for IL-7 in the complex mechanisms by which immune mediators modulate metabolic functions.  相似文献   

11.
Adipose tissue plays a central role in the development of obesity, and thus characterization of the molecular changes related to obesity in this tissue is a main concern. Recently we identified chitosan oligosaccharides (CO) as a potent adipogenic inhibitor in 3T3-L1 cells. In the current study, a proteomic approach was used to investigate the anti-obesity effect of CO in white adipose tissue of ob/ob mice. CO administration significantly lowered body weight gain and epididymal WAT mass compared to control animals. In addition, twenty-five proteins were found to be differentially expressed between the two groups of animals in response to CO treatment. Expression changes in Karyopherin beta 1, indoleamine-pyrrole 2,3-dioxygenase, and retinoic acid binding protein were associated here for the first time with obesity. Immunoblotting studies of adipocyte protein 2 (aP2) and aquaporin-7 also showed amelioration in their levels in WAT. Furthermore, the results of adipose tissue specific gene expressions of aP2, adiponectin, TNF-α, and IL-6 were in good agreement with improved levels of obesity. Gene expression of PPARg and SREBP-1c were also down-regulated by CO treatment. The results suggest that the anti-obesity effect of CO might be mediated by the modulation of adipokines and adipose tissue specific genes.  相似文献   

12.
Increase in adipose mass results in obesity and modulation of several factors in white adipose tissue (WAT). Two important examples are tumor necrosis factor alpha (TNFalpha) and leptin, both of which are upregulated in adipose tissue in obesity. In order to isolate genes differentially expressed in the WAT of genetically obese db/db mice compared to their lean littermates, we performed RNA fingerprinting and identified haptoglobin (Hp), which is significantly upregulated in the obese animals. Hp is a glycoprotein induced by a number of cytokines, LPS (Lipopolysaccharide), and more generally by inflammation. A significant upregulation of WAT Hp expression was also evident in several experimental obese models including the yellow agouti (/) A(y), ob/ob and goldthioglucose-treated mice (10-, 8-, and 7-fold, respectively). To identify the potential signals for an increase in Hp expression in obesity, we examined leptin and TNFalpha in vivo. Wild type animals treated with recombinant leptin did not show any alteration in WAT Hp expression compared to controls that were food restricted to the level of intake of the treated animals. On the other hand, Hp expression was induced in mice transgenically expressing TNFalpha in adipose tissue. Finally, a significant downregulation of WAT Hp mRNA was observed in ob/ob mice deficient in TNFalpha function, when compared to the ob/ob controls. These results demonstrate that haptoglobin expression in WAT is increased in obesity in rodents and TNFalpha is an important signal for this regulation.  相似文献   

13.
The functional balance between brown adipose tissue (BAT) and white adipose tissue (WAT) is important for metabolic homeostasis. We compared the effects of fasting on the gene expression profiles in BAT, WAT and liver by using a DNA microarray analysis. Tissues were obtained from rats that had been fed or fasted for 24 h. Taking the false discovery rate into account, we extracted the top 1,000 genes that had been differentially expressed between the fed and fasted rats. In all three tissues, a Gene Ontology analysis revealed that the lipid and protein biosynthesis-related genes had been markedly down-regulated. The whole-body fuel shift from glucose to triacylglycerol and the induction of autophagy were also observed. There was marked up-regulation of genes in the 'protein ubiquitination' category particularly in BAT of the fasted rats, suggesting that the ubiquitin-proteasome system was involved in saving energy as an adaptation to food shortage.  相似文献   

14.
15.
The changes of liver and white adipose tissue (WAT) morphology during development of melanocortin obesity in female Agouti yellow (genotype A Y/a) C57Bl/6J mice have been investigated. Mouse strain of a/a genotype was used as a control. Results have been compared with the hormonal and metabolic changes during development of obesity and type 2 diabete in Agouti yellow mice. The tissues obtained from mice of 8-, 11-, 15- and 22-week old have been analyzed. The morphology of liver and WAT of A(Y) and control animals did not differ during 15 weeks of age. 40% of A(Y) mice revealed liver steatosis (fatty liver) at the age of 22 weeks. In addition, elevation in the inflammatory and proliferating processes in the liver and severe inflammation in WAT has been observed in these animals. Since as early as 15 weeks old A(Y) mice demonstrated the appearance of insulin resistance characteristics we conclude that hormonal and metabolic abnormalities could play a role of the primary factor of pathological reorganization of liver and WAT morphology.  相似文献   

16.
Estrogen and progestin participate in the regulation of adipose tissue metabolism, and peroxisome proliferator-activated receptor-gamma (PPARgamma) and retinoic acid receptor-alpha (RXRalpha) are absolutely required for adipose tissue development. The present study is to investigate the changes in parametrial fat mass and expression of PPARgamma and RXRalpha during estrous cycle in mice. Parametrial white adipose tissues (WAT), inter-scapula brown adipose tissues, and uteri from female mice were weighed. Blood samples were collected for the measurement of 17 beta-estradiol and progesterone levels. An RNase protection assay and Western blot analysis were used to compare the expression of PPARgamma and RXRalpha in adipose tissue. The mass of parametrial WAT in diestrus was significantly higher compared with estrus. However, there is no significant difference on the mass of brown adipose tissues during estrous cycle. The expression of PPARgamma in WAT in diestrus was significantly higher than that in estrus. The expression of RXRalpha during estrous cycle was unchanged in both white and brown adipose tissues. In conclusion, the variation in parametrial WAT mass during the mouse estrous cycle correlates with changes in the expression of PPARgamma in WAT.  相似文献   

17.
Acylation-stimulating protein (ASP) is a lipogenic hormone secreted by white adipose tissue (WAT). Male C3 knockout (KO; C3(-/-)) ASP-deficient mice have delayed postprandial triglyceride (TG) clearance and reduced WAT mass. The objective of this study was to examine the mechanism(s) by which ASP deficiency induces differences in postprandial TG clearance and body composition in male KO mice. Except for increased (3)H-labeled nonesterified fatty acid (NEFA) trapping in brown adipose tissue (BAT) of KO mice (P = 0.02), there were no intrinsic tissue differences between wild-type (WT) and KO mice in (3)H-NEFA or [(14)C]glucose oxidation, TG synthesis or lipolysis in WAT, muscle, or liver. There were no differences in WAT or skeletal muscle hydrolysis, uptake, and storage of [(3)H]triolein substrate [in situ lipoprotein lipase (LPL) activity]. ASP, however, increased in situ LPL activity in WAT (+64.8%, P = 0.02) but decreased it in muscle (-35.0%, P = 0.0002). In addition, after prelabeling WAT with [(3)H]oleate and [(14)C]glucose, ASP increased (3)H-lipid retention, [(3)H]TG synthesis, and [(3)H]TG-to-[(14)C]TG ratio, whereas it decreased (3)H-NEFA release, indicating increased NEFA trapping in WAT. Conversely, in muscle, ASP induced effects opposite to those in WAT and increased lipolysis, indicating reduced NEFA trapping within muscle by ASP (P < 0.05 for all parameters). In conclusion, novel data in this study suggest that 1) there is little intrinsic difference between KO and WT tissue in the parameters examined and 2) ASP differentially regulates in situ LPL activity and NEFA trapping in WAT and skeletal muscle, which may promote optimal insulin sensitivity in vivo.  相似文献   

18.
Free fatty acids (FFA) are important extracellular and intracellular signaling molecules and are thought to be involved in beta-adrenergic-induced remodeling of adipose tissue, which involves a transient inflammatory response followed by mitochondrial biogenesis and increased oxidative capacity. This work examined the role of hormone-sensitive lipase (HSL), a key enzyme of acylglycerol metabolism, in white adipose tissue (WAT) remodeling using genetic inactivation or pharmacological inhibition. Acute treatment with the beta(3)-adrenergic agonist CL-316,243 (CL) induced expression of inflammatory markers and caused extravasation of myeloid cells in WAT of wild-type (WT) mice. HSL-knockout (KO) mice had elevated inflammatory gene expression in the absence of stimulation, and acute injection of CL did not further recruit myeloid cells, nor did it further elevate inflammatory gene expression. Acute pharmacological inhibition of HSL with BAY 59-9435 (BAY) had no effect on inflammatory gene expression in WAT or in cultured 3T3-L1 adipocytes. However, BAY prevented induction of inflammatory cytokines by beta-adrenergic stimulation in WAT in vivo and in cultured 3T3-L1 adipocytes. Chronic CL treatment stimulated mitochondrial biogenesis, expanded oxidative capacity, and increased lipid droplet fragmentation in WT mice, and these effects were significantly impaired in HSL-KO mice. In contrast to HSL-KO mice, mice with defective signaling of Toll-like receptor 4, a putative FFA receptor, showed normal beta-adrenergic-induced remodeling of adipose tissue. Overall, results reveal the importance of HSL activity in WAT metabolic plasticity and inflammation.  相似文献   

19.
20.
Adipose tissue appears to be a highly conserved site of cholesteryl ester transfer protein (CETP) expression across species. To investigate the impact of adipose CETP expression on lipid metabolism, we created adipose tissue-specific CETP transgenic (CETPTg) mice. CETP mRNA is predominantly expressed in adipose tissue. Plasma CETP mass and activity are readily detectable in CETPTg mice but not in controls. Plasma lipoprotein analysis shows marked reductions in HDL cholesterol and phospholipids, increases non-HDL lipids, decreases apolipoprotein A-I (apoA-I), and increases apoB. Unexpectedly, CETPTg adipocytes are significantly smaller than those in control mice (44%), triglyceride and cholesterol in adipose tissue were significantly decreased compared with controls (50% and 37%, respectively), and phospholipids showed no significant changes. To study the mechanism, we measured peroxisome proliferator-activated receptor gamma, sterol-regulatory element binding protein-1c, LPL, and hormone-sensitive lipase (HSL) in aP2-CETPTg adipose tissue and controls and found that, except for HSL, all mRNA levels are significantly decreased in the transgenic mice compared with controls (26, 33, and 22%). In conclusion, adipose tissue CETP makes a major contribution to CETP in the circulation, reduces HDL, and increases non-HDL cholesterol levels. Moreover, adipose tissue CETP expression changes triglyceride and cholesterol content and the size of adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号