首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of GABAA receptors: views from outside the synaptic cleft   总被引:1,自引:0,他引:1  
Glykys J  Mody I 《Neuron》2007,56(5):763-770
Some GABA(A) receptors (GABA(A)Rs) are activated by low transmitter levels present in the extracellular space and generate an uninterrupted conductance referred to as "tonic." This tonic conductance is highly sensitive to all factors regulating the amount of GABA surrounding the neurons. Only a few GABA(A)Rs with particular subunit combinations are well suited to mediate the tonic conductance. These same receptors constitute important and specific targets for various endogenous and exogenous neuroactive compounds and possible therapeutic targets.  相似文献   

2.
Feedback from horizontal cells (HCs) to cone photoreceptors plays a key role in the center-surround-receptive field organization of retinal neurons. Recordings from cone photoreceptors in newt retinal slices were obtained by the whole-cell patch-clamp technique, using a superfusate containing a GABA antagonist (100 microM picrotoxin). Surround illumination of the receptive field increased the voltage-dependent calcium current (ICa) in the cones, and shifted the activation voltage of ICa to negative voltages. External alkalinization also increased cone ICa and shifted its activation voltage toward negative voltages. Enrichment of the pH buffering capacity of the extracellular solution increased cone ICa, and blocked any additional increase in cone ICa by surround illumination. Hyperpolarization of the HCs by a glutamate receptor antagonist-augmented cone ICa, whereas depolarization of the HCs by kainate suppressed cone ICa. From these results, we propose the hypothesis that pH changes in the synaptic clefts, which are intimately related to the membrane voltage of the HCs, mediate the feedback from the HCs to cone photoreceptors. The feedback mediated by pH changes in the synaptic cleft may serve as an additional mechanism for the center-surround organization of the receptive field in the outer retina.  相似文献   

3.
Collagen IV scaffolds assemble through an intricate pathway that begins intracellularly and is completed extracellularly. Multiple intracellular enzymes act in concert to assemble collagen IV protomers, the building blocks of collagen IV scaffolds. After being secreted from cells, protomers are activated to initiate oligomerization, forming insoluble networks that are structurally reinforced with covalent crosslinks. Within these networks, embedded binding sites along the length of the protomer lead to the “decoration” of collagen IV triple helix with numerous functional molecules. We refer to these networks as “smart” scaffolds, which as a component of the basement membrane enable the development and function of multicellular tissues in all animal phyla. In this review, we present key molecular mechanisms that drive the assembly of collagen IV smart scaffolds.  相似文献   

4.
The beta-amyloid precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, but its normal functions in the brain are poorly understood. A number of APP-interacting proteins have been identified: intracellularly, APP interacts with adaptor proteins through its conserved NPXY domain; extracellularly, APP interacts with a component of the extracellular matrix, F-spondin. Interestingly, many of these APP-interacting proteins also interact with the family of receptors for apolipoprotein E (apoE), the Alzheimer's disease risk factor. apoE receptors also share with APP the fact that they are cleaved by the same secretase activities. apoE receptors are shed from the cell surface, a cleavage that is regulated by receptor-ligand interactions, and C-terminal fragments of apoE receptors are cleaved by gamma-secretase. Functionally, both APP and apoE receptors affect neuronal migration and synapse formation in the brain. This review summarizes these numerous interactions between APP and apoE receptors, which provide clues about the normal functions of APP.  相似文献   

5.
Park M  Shen K 《The EMBO journal》2012,31(12):2697-2704
Wnt proteins play important roles in wiring neural circuits. Wnts regulate many aspects of neural circuit generation through their receptors and distinct signalling pathways. In this review, we discuss recent findings on the functions of Wnts in various aspects of neural circuit formation, including neuronal polarity, axon guidance, synapse formation, and synaptic plasticity in vertebrate and invertebrate nervous systems.  相似文献   

6.
7.
Agrin, a heparin sulfate proteoglycan, is an integral member of the synaptic basal lamina and plays a critical role in the formation and maintenance of the neuromuscular junction. The N‐terminal region of agrin binds tightly to basal lamina, while the C‐terminal region interacts with a muscle‐specific tyrosine kinase (MuSK) to induce the formation of the postsynaptic apparatus. Although the binding of agrin to basal lamina is tight, the binding of agrin to MuSK has yet to be shown; therefore, basal lamina binding is critical for maintaining the presentation of agrin to MuSK. Here we report evidence that supports our hypothesis that matrix metalloproteinase‐3 (MMP‐3) is responsible for the removal of agrin from synaptic basal lamina. Antibodies to the hinge region of human MMP‐3 recognize molecules concentrated at the frog neuromuscular junction in both cross sections and whole mounts. Electron microscopy of neuromuscular junctions stained with antibodies to MMP‐3 reveals that staining is found in the extracellular matrix surrounding the Schwann cell. Treatment of sections from frog anterior tibialis muscle with MMP‐3 results in a clear and reproducible removal of agrin immunoreactivity from synaptic basal lamina. The same MMP‐3 treatment does not alter anti‐laminin staining. These results support our hypothesis that synaptic activity results in the activation of MMP‐3 at the neuromuscular junction and that MMP‐3 specifically removes agrin from synaptic basal lamina. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 140–149, 2000  相似文献   

8.
Trigeminal (V) nucleus principalis (PrV) is the requisite brainstem nucleus in the whisker-to-barrel cortex model system that is widely used to reveal mechanisms of map formation and information processing. Yet, little is known of the actual PrV circuitry. In the ventral “barrelette” portion of the adult mouse PrV, relationships between V primary afferent terminals, thalamic-projecting PrV neurons, and gamma-aminobutyric acid (GABA)-ergic terminals were analyzed in the electron microscope. Primary afferents, thalamic-projecting cells, and GABAergic terminals were labeled, respectively, by Neurobiotin injections in the V ganglion, horseradish peroxidase injections in the thalamus, and postembedding immunogold histochemistry. Primary afferent terminals (Neurobiotin- and glutamate-immunoreactive) display asymmetric and multiple synapses predominantly upon the distal dendrites and spines of PrV cells that project to the thalamus. Primary afferents also synapse upon GABAergic terminals. GABAergic terminals display symmetric synapses onto primary afferent terminals, the somata and dendrites (distal, mostly) of thalamic-projecting neurons, and GABAergic dendrites. Thus, primary afferent inputs through the PrV are subject to pre- and postsynaptic GABAergic influences. As such, circuitry exists in PrV “barrelettes” for primary afferents to directly activate thalamic-projecting and inhibitory local circuit cells. The latter are synaptically associated with themselves, the primary afferents, and with the thalamic-projecting neurons. Thus, whisker-related primary afferent inputs through PrV projection neurons are pre- and postsynaptically modulated by local circuits.  相似文献   

9.
10.
Ventriglia F 《Bio Systems》2011,104(1):14-22
Mathematical models of the excitatory synapse are furnishing valuable information about the synaptic response. Based on Brownian-diffusion of glutamate molecules, a synapse model was utilized to investigate the synaptic response on a femto-second time scale by the use of a parallel computer. In particular, the presence of fibrils crossing the synaptic cleft was simulated, which could have a role in shaping the brain activity. To this aim the model of synapse was modified by considering trans-synaptic filaments with diameters ranging from 7 nm to 3 nm, disposed on a grid with spacing of 14 nm or 8 nm. The simulation demonstrated that the presence of filaments induced an increase in the synaptic response, most likely linked to an increment in the probability of encounter between glutamate molecules and receptors. The increase was small - from 5 to 20%, but metabolic and functional considerations provide substantive hints about the importance of these small changes for brain activity. Moreover, it was shown that the presence of filaments made more stable the response of the synapse to random variations of pre-synaptic elements. Originated by these computational results, some inferences about the biological bases of mind diseases such as autism, mental retardation and schizophrenia, are reported in the Discussion.  相似文献   

11.
Summary Synaptic terminals of fast (FCE) and slow (SCE) excitatory neurons were physiologically identified on separate fibres of one muscle, the closer muscle in lobster claws. The innervation by these identified fibers was demonstrated over long distances (7–21 m) by examining serial thin sections at periodic intervals. The ultrastructure of each type of innervation was consistent both qualitatively and quantitatively in two separate samples. The FCE innervation is relatively simple in having consistently small-diameter terminals each forming a single long synapse, with few synaptic vesicles, and little if any postsynaptic apparatus. The SCE innervation is more complex in having larger-diameter but more variable terminals forming several short synapses, with many synaptic vesicles and an extensive postsynaptic apparatus. These differences in the size of the synapses and the number of synaptic vesicles parallel differences in transmitter release and fatigue sensitivity characteristic of the two types of innervation. The degree of elaboration of the postsynaptic apparatus may reflect differences in the amount of transmitter taken up after release. Our data reveal for the first time in a single muscle differences between FCE and SCE innervation previously reported in different muscles and in different species.Supported by grants from NIH (NINCDS) to A.G. Humes and the late Fred Lang and from NSERC and Muscular Dystrophy Assoc. of Canada to C.K. GovindWe thank Lena Hill for her technical expertise and critical evaluation of the study, and Dr. A.G. Humes for providing research facilities  相似文献   

12.
《Autophagy》2013,9(1):168-169
Beyond its role as a response to starvation, autophagy has been increasingly implicated as part of the normal mechanisms regulating growth and remodeling of various cells and tissues during development. In recently published work we demonstrate that autophagy promotes synaptic development of the Drosophila larval neuromuscular junction (NMJ). We find that autophagy acts by downregulating an E3 ubiquitin ligase, Highwire (Hiw), which limits NMJ growth via a MAPKKK pathway. A similar role for autophagy in the synaptic remodeling that occurs during learning and memory remains an intriguing possibility.  相似文献   

13.
14.
15.
16.
Chronic neurodegenerative diseases of the CNS (central nervous system) are characterized by the loss of neurons. There is, however, growing evidence to show that an early stage of this process involves degeneration of presynaptic terminals prior to the loss of the cell body. Synaptic plasticity in CNS pathology has been associated with microglia and the phenomenon of synaptic stripping. We review here the evidence for the involvement of microglia in synaptic stripping and synapse degeneration and we conclude that this is a case of guilt by association. In disease models of chronic neurodegeneration, there is no evidence that microglia play an active role in either synaptic stripping or synapse degeneration, but the degeneration of the synapse and the envelopment of a degenerating terminal appears to be a neuron autonomous event. We highlight here some of the gaps in our understanding of synapse degeneration in chronic neurodegenerative disease.  相似文献   

17.
The formation of synaptic connections requires the coordination of specific guidance molecules and spontaneous neuronal activity. The visual system has provided a useful model for understanding the role of these cues in shaping the precise connections from the neural retina to the brain. Here, we demonstrate that two essential genes in the Reelin signaling pathway function during the patterning of synaptic connectivity in the retina. Physiological studies of mice deficient in either reelin or disabled-1 reveal an attenuation of rod-driven retinal responses. This defect is associated with a decrease in rod bipolar cell density and an abnormal distribution of processes in the inner plexiform layer. These results imply that, in addition to its essential role during neuronal migration, the Reelin pathway contributes to the formation of neuronal circuits in the central nervous system.  相似文献   

18.
In this paper, we present a biologically detailed mathematical model of tripartite synapses, where astrocytes modulate short-term synaptic plasticity. The model consists of a pre-synaptic bouton, a post-synaptic dendritic spine-head, a synaptic cleft and a peri-synaptic astrocyte controlling Ca2 +  dynamics inside the synaptic bouton. This in turn controls glutamate release dynamics in the cleft. As a consequence of this, glutamate concentration in the cleft has been modeled, in which glutamate reuptake by astrocytes has also been incorporated. Finally, dendritic spine-head dynamics has been modeled. As an application, this model clearly shows synaptic potentiation in the hippocampal region, i.e., astrocyte Ca2 +  mediates synaptic plasticity, which is in conformity with the majority of the recent findings (Perea and Araque (Science 317, 1083–1086, 2007); Henneberger et al. (Nature 463, 232–236, 2010); Navarrete et al. (PLoS Biol. 10, e1001259, 2012)).

Electronic supplementary material

The online version of this article (doi:10.1007/s10867-012-9267-7) contains supplementary material, which is available to authorized users.  相似文献   

19.
Maintaining a population of stable synaptic connections is probably of critical importance for the preservation of memories and functional circuitry, but the molecular dynamics that underlie synapse stabilization is poorly understood. Here, we use simultaneous time-lapse imaging of post synaptic density-95 (PSD-95) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) to investigate the dynamics of protein composition at axodendritic (AD) contacts. Our data reveal that this composition is highly dynamic, with both proteins moving into and out of the same synapse independently, so that synapses cycle rapidly between states in which they are enriched for none, one or both proteins. We assessed how PSD-95 and CaMKII interact at stable and transient AD sites and found that both phospho-CaMKII and PSD-95 are present more often at stable than labile contacts. Finally, we found that synaptic contacts are more stable in older neurons, and this process can be mimicked in younger neurons by overexpression of PSD-95. Taken together, these data show that synaptic protein composition is highly variable over a time-scale of hours, and that PSD-95 is probably a key synaptic protein that promotes synapse stability.  相似文献   

20.
Polymerization of filamentous (F)‐actin at the neuronal synapse plays an important role in neuronal function. However, the regulatory mechanisms controlling the levels of synaptic actin remain incompletely understood. Here, I used established pharmacological blockers to acutely disrupt the function of actin polymerization machinery, then quantified their effect on synaptic F‐actin levels. Synaptic F‐actin was modestly decreased by inhibition of Arp2/3‐dependent actin branching. Blockade of formin‐dependent actin elongation resulted in an Arp2/3‐dependent increase in synaptic actin that could be mimicked by limited actin depolymerization. Limited actin depolymerization was also sufficient to reverse a decrease in synaptic F‐actin caused by prolonged blockade of synaptic NMDA‐type glutamate receptors. These results suggest that interplay between different actin polymerization pathways may regulate synaptic actin dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号