首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies of 25-hydroxyvitamin D (25(OH)D) levels and pancreas cancer have suggested a potential role of the vitamin D pathway in the etiology of this fatal disease. Variants in vitamin-D related genes are known to affect 25(OH)D levels and function and it is unknown if these variants may influence pancreatic cancer risk. The association between 87 single nucleotide polymorphisms (SNPs) in 11 genes was evaluated within the Ontario Pancreas Cancer Study, a population-based case-control study. Pancreatic cancer cases with pathology confirmed adenocarcinoma were identified from the Ontario Cancer Registry (n = 628) and controls were identified through random digit dialing (n = 1193). Age and sex adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated by multivariate logistic regression. SNPs in the CYP24A1, CYP2R1, calcium sensing receptor (CASR), vitamin D binding protein (GC), retinoid X receptor-alpha (RXRA) and megalin (LRP2) genes were significantly associated with pancreas cancer risk. For example, pancreas cancer risk was inversely associated with CYP2R1 rs10741657 (AA versus GG, OR = 0.70; 95%CI: 0.51–0.95) and positively with CYP24A1 rs6127119 (TT versus CC. OR = 1.94; 95%CI: 1.28–2.94). None of the associations were statistically significant after adjustment for multiple comparisons. Vitamin D pathway gene variants may be associated with pancreas cancer risk and future studies are needed to understand the possible role of vitamin D in tumorigenesis and may have implications for cancer-prevention strategies.  相似文献   

2.
Based on observational studies, early age leukemia (EAL) was associated with maternal hormone exposure during pregnancy. We studied the association between genetic polymorphisms of estrogen metabolism and EAL. Using data from the Brazilian Collaborative Study Group of Infant Acute Leukemia (2000–2012), 350 cases and 404 age-matched controls and 134 mothers of cases and controls were genotyped to explore polymorphisms in genes of the estrogen metabolism pathway: CYP1B1 (c.1294C>G, rs1056836), CYP3A4 (c.-392A>G, rs2740574), CYP3A5 (c.219-237G>A, rs776746), GSTM1/GSTT1 deletions, and SULT1A1 (c.638G>A, rs9282861; and c.667A>G, rs1801030). Logistic regression was used to calculate the odds ratios (OR) with 95% confidence intervals (CIs), and unconditional logistic regression was used to estimate adjusted odds ratios (aORs) by ethnicity. Because of multiple testing, p values < 0.01 were significant after Bonferroni correction. SULT1A1 (c.638G>A) was associated to infant acute lymphoblastic leukemia and acute myeloid leukemia (AML) risk in males (additive model: aOR = 0.52; 95% CI: 0.29–0.95, p = 0.03; dominant model: aOR = 2.18; 95% CI: 1.17–4.05, p = 0.01, respectively). CYP1B1 polymorphism was associated with a decreased risk of AML either for non-white or female children (additive model: OR = 0.24; 95% CI: 0.08–0.76, p < 0.01; additive model: aOR = 0.27; 95% CI: 0.08–0.89, p = 0.03, respectively). Since polymorphisms of Cytochrome P450 genes presented gender-specific risk associations, we also investigated their expression. CYP1B1 was not expressed in 57.1% of EAL cases, and its expression varied by genotype, gender, and leukemia subtype. Maternal-fetal GSTT1 null genotype was associated with risk of EAL. This study shows that polymorphisms in genes of estrogen metabolism confer genetic susceptibility to EAL, mainly in males, and maternal susceptibility genes modify the risk for developing EAL in newborns.  相似文献   

3.
Vitamin D is implicated in a wide range of health outcomes, and although environmental predictors of vitamin D levels are known, the genetic drivers of vitamin D status remain to be clarified. African Americans are a group at particularly high risk for vitamin D insufficiency but to date have been virtually absent from studies of genetic predictors of circulating vitamin D levels. Within the Southern Community Cohort Study, we investigated the association between 94 single nucleotide polymorphisms (SNPs) in five vitamin D pathway genes (GC, VDR, CYP2R1, CYP24A1, CYP27B1) and serum 25-hydroxyvitamin D (25(OH)D) levels among 379 African American and 379 Caucasian participants. We found statistically significant associations with three SNPs (rs2298849 and rs2282679 in the GC gene, and rs10877012 in the CYP27B1 gene), although only for African Americans. A genotype score, representing the number of risk alleles across the three SNPs, alone accounted for 4.6% of the variation in serum vitamin D among African Americans. A genotype score of 5 (vs. 1) was also associated with a 7.1 ng/mL reduction in serum 25(OH)D levels and a six-fold risk of vitamin D insufficiency (<20 ng/mL) (odds ratio 6.0, p = 0.01) among African Americans. With African ancestry determined from a panel of 276 ancestry informative SNPs, we found that high risk genotypes did not cluster among those with higher African ancestry. This study is one of the first to investigate common genetic variation in relation to vitamin D levels in African Americans, and the first to evaluate how vitamin D-associated genotypes vary in relation to African ancestry. These results suggest that further evaluation of genetic contributors to vitamin D status among African Americans may help provide insights regarding racial health disparities or enable the identification of subgroups especially in need of vitamin D-related interventions.  相似文献   

4.
Common genetic variants rs10741657 and rs10766197 in CYP2R1 and rs4588 and rs842999 in GC and a combined genetic risk score (GRS) of these four variants influence late summer 25-hydroxyvitamin D (25(OH)D) concentrations. The objectives were to identify those who are most at risk of developing low vitamin D status during winter and to assess whether vitamin D3-fortified bread and milk will increase 25(OH)D concentrations in those with genetically determined low 25(OH)D concentrations at late summer. We used data from the VitmaD study. Participants were allocated to either vitamin D3-fortified bread and milk or non-fortified bread and milk during winter. In the fortification group, CYP2R1 (rs10741657) and GC (rs4588 and rs842999) were statistically significantly associated with winter 25(OH)D concentrations and CYP2R1 (rs10766197) was borderline significant. There was a negative linear trend between 25(OH)D concentrations and carriage of 0–8 risk alleles (p < 0.0001). No association was found for the control group (p = 0.1428). There was a significant positive linear relationship between different quintiles of total vitamin D intake and the increase in 25(OH)D concentrations among carriers of 0–2 (p = 0.0012), 3 (p = 0.0001), 4 (p = 0.0118) or 5 (p = 0.0029) risk alleles, but not among carriers of 6–8 risk alleles (p = 0.1051). Carriers of a high GRS were more prone to be vitamin D deficient compared to carriers of a low GRS. Furthermore, rs4588-AA carriers have a low but very stable 25(OH)D concentration, and interestingly, also low PTH level.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0413-7) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

A number of genetic studies have reported an association between vitamin D related genes such as group-specific component gene (GC), Cytochrome P450, family 2, subfamily R, polypeptide 1 (CYP2R1) and 7-dehydrocholesterol reductase/nicotinamide-adenine dinucleotide synthetase 1 (DHCR7/NADSYN1) and serum levels of the active form of Vitamin D, 25 (OH) D among African Americans, Caucasians, and Chinese. Little is known about how genetic variations associate with, or contribute to, 25(OH)D levels in Arabs populations.

Methods

Allele frequencies of 18 SNPs derived from CYP2R1, GC, and DHCR7/NADSYN1 genes in 1549 individuals (Arabs, South Asians, and Southeast Asians living in Kuwait) were determined using real time genotyping assays. Serum levels of 25(OH)D were measured using chemiluminescence immunoassay.

Results

GC gene polymorphisms (rs17467825, rs3755967, rs2282679, rs7041 and rs2298850) were found to be associated with 25(OH)D serum levels in Arabs and South Asians. Two of the CYP2R1 SNPs (rs10500804 and rs12794714) and one of GC SNPs (rs1155563) were found to be significantly associated with 25(OH)D serum levels only in people of Arab origin. Across all three ethnicities none of the SNPs of DHCR7/NADSYN1 were associated with serum 25(OH)D levels and none of the 18 SNPs were significantly associated with serum 25(OH)D levels in people from South East Asia.

Conclusion

Our data show for the first time significant association between the GC (rs2282679 and rs7041), CYP2R1 (rs10741657) SNPs and 25(OH)D levels. This supports their roles in vitamin D Insufficiency in Arab and South Asian populations respectively. Interestingly, two of the CYP2R1 SNPs (rs10500804 and rs12794714) and one GC SNP (rs1155563) were found to correlate with vitamin D in Arab population exclusively signifying their importance in this population.  相似文献   

6.
《Endocrine practice》2015,21(3):221-225
ObjectiveVitamin D deficiency is related to increased risks for a number of diseases. To date, at least 3 candidate genes, vitamin D binding protein (VDBP) gene (GC), 25-hydroxylase (CYP2R1), and 7-dehydrocholes-terol reductase/NAD synthetase 1 (DHCR7/NADSYN1), have been associated with serum 25-hydroxyvitamin D (25[OH]D) levels, but their influences on the prevalence of vitamin D deficiency in relation to other known risk factors have not been clearly defined.MethodsThe study assessed 4,476 individuals aged 14 to 93 years from the Thailand 4th National Health Examination Survey (2008-2009) and the Electricity Generating Authority of Thailand (EGAT) (2008) cohorts. The GC rs2282679 polymorphism on chromosome 4q12-q13 was genotyped by real-time polymerase chain reaction (PCR). Serum 25(OH)D was measured by liquid chromatography/tandem mass spectrometry. Vitamin D deficiency was defined as a 25(OH)D concentration < 20 ng/mL.ResultsData were expressed as mean ± SD. There were 2,747 (61.4%) males and 1,729 (38.6%) females in the study, with an average body mass index (BMI) of 23.7 ± 4.2 kg/m2 and a mean total 25(OH)D of 28.9 ± 9.0 ng/mL. Serum 25(OH)D levels decreased progressively with the presence of the C allele. Using multiple logistic regression analysis, vitamin D deficiency was significantly associated with the GC rs2282679 genotype (odds ratio [OR] per C allele 1.80, 95% confidence interval CI 1.57-2.01), independent of established risk factors for vitamin D deficiency including age, sex, and BMI.ConclusionA specific GC gene polymorphism is associated with lower 25(OH)D levels independent of age, sex, and adiposity in Thai subjects. (Endocr Pract. 2015;21:221-225)  相似文献   

7.
24,25(OH)2D is the product of 25(OH)D catabolism by CYP24A1. The measurement of serum 24,25(OH)2D concentration may serve as an indicator of vitamin D catabolic status and the relative ratio with 25(OH)D can be used to identify patients with inactivating mutations in CYP24A1. We describe a LC–MS/MS method to determine: (1) the relationships between serum 24,25(OH)2D and 25(OH)D; (2) serum reference intervals in healthy individuals; (3) the diagnostic accuracy of 24,25(OH)2D measurement as an indicator for vitamin D status; 4) 24,25(OH)2D cut-off value for clinically significant change between inadequate and sufficient 25(OH)D status. Serum samples of healthy participants (n=1996) from Army recruits and patients (n=294) were analysed. The LC–MS/MS assay satisfied industry standards for method validation. We found a positive, concentration-dependent relationship between serum 24,25(OH)2D and 25(OH)2D concentrations. The 25(OH)D:24,25(OH)2D ratio was significantly higher (P<.001) at 25(OH)D<50 nmol/L. The reference interval for 25(OH)D:24,25(OH)2D ratio in healthy subjects was 7–23. Measurement of serum 24,25(OH)2D can be used as predictor of vitamin D status, a concentration of>4.2 nmol/L was identified as a diagnostic cut-off for 25(OH)D replete status. One patient sample with an elevated 25(OH)D:24,25(OH)2D ratio of 32 and hypercalcaemia who on genetic testing confirmed to have a biallelic mutation of CYP24A1. Our study demonstrated the feasibility of a combined 24,25(OH)2D and 25(OH)D assessment profile. Our established cut-off value for 24,25(OH)2D and ratio reference ranges can be useful to clinicians in the investigation of patients with an impaired calcium/phosphate metabolism and may point towards the existence of CYP24A1 gene abnormalities.  相似文献   

8.
9.
《PloS one》2015,10(3)
Evidence on the association between vitamin D status and pancreatic cancer risk is inconsistent. This inconsistency may be partially attributable to variation in vitamin D regulating genes. We selected 11 vitamin D-related genes (GC, DHCR7, CYP2R1, VDR, CYP27B1, CYP24A1, CYP27A1, RXRA, CRP2, CASR and CUBN) totaling 213 single nucleotide polymorphisms (SNPs), and examined associations with pancreatic adenocarcinoma. Our study included 3,583 pancreatic cancer cases and 7,053 controls from the genome-wide association studies of pancreatic cancer PanScans-I-III. We used the Adaptive Joint Test and the Adaptive Rank Truncated Product statistic for pathway and gene analyses, and unconditional logistic regression for SNP analyses, adjusting for age, sex, study and population stratification. We examined effect modification by circulating vitamin D concentration (≤50, >50 nmol/L) for the most significant SNPs using a subset of cohort cases (n = 713) and controls (n = 878). The vitamin D metabolic pathway was not associated with pancreatic cancer risk (p = 0.830). Of the individual genes, none were associated with pancreatic cancer risk at a significance level of p<0.05. SNPs near the VDR (rs2239186), LRP2 (rs4668123), CYP24A1 (rs2762932), GC (rs2282679), and CUBN (rs1810205) genes were the top SNPs associated with pancreatic cancer (p-values 0.008–0.037), but none were statistically significant after adjusting for multiple comparisons. Associations between these SNPs and pancreatic cancer were not modified by circulating concentrations of vitamin D. These findings do not support an association between vitamin D-related genes and pancreatic cancer risk. Future research should explore other pathways through which vitamin D status might be associated with pancreatic cancer risk.  相似文献   

10.
The development of novel gene expression systems for cytochrome P450s (CYPs) together with a revolution in analytical mass spectrometry with the emergence of liquid chromatography/mass spectrometry (LC/MS) has opened the door to answering some long-standing questions in Vitamin D metabolism. Our studies focused on: (1) elucidating the role of CYP24 in 25-OH-D3 and 1alpha,25-(OH)2D3 metabolism; (2) exploring how DBP influences this process; (3) measuring 25-OH-D3 metabolism in CYP24-knockout (CYP24-XO) cells and; (4) comparing 1alpha-OH-D2 metabolism in the CYP24-XO mouse in vivo and in vitro. Methodology employed CYP24 over-expression and knockout systems in conjunction with state-of-the-art analytical LC/MS, diode array, and radioisotopic detection methods. We found that CYP24 metabolizes 25-OH-D3 and 1alpha,25-(OH)2D3 at similar rates in vitro, but that for 25-OH-D3 but not 1alpha,25-(OH)2D3, this rate is strongly influenced by the concentration of DBP. Unlike their wild type littermates, the administration of 25-OH-D3 to CYP24-XO mice results in no measurable 24,25-(OH)2D3 production. When neonatal murine keratinocytes are prepared from wild type and CYP24-XO mice there was no measurable production of 24,25-(OH)2D3 or 1alpha,24,25-(OH)2D3 in CYP24-XO mice. Similar experiments using the same wild type and CYP24-XO animals and cells and [3H] 1alpha-OH-D2 resulted in the apparent paradox that the Vitamin D prodrug was 25-hydroxylated in vivo but 24-hydroxylated in vitro.  相似文献   

11.
12.
A recent genome-wide association study (GWAS) in African descent populations identified novel loci associated with skin pigmentation. However, how genomic variations affect skin pigmentation and how these skin pigmentation gene variants affect serum 25(OH) vitamin D variation has not been explored in African Americans (AAs). In order to further understand genetic factors that affect human skin pigmentation and serum 25(OH)D variation, we performed a GWAS for skin pigmentation with 395 AAs and a replication study with 681 AAs. Then, we tested if the identified variants are associated with serum 25(OH) D concentrations in a subset of AAs (n = 591). Skin pigmentation, Melanin Index (M-Index), was measured using a narrow-band reflectometer. Multiple regression analysis was performed to identify variants associated with M-Index and to assess their role in serum 25(OH)D variation adjusting for population stratification and relevant confounding variables. A variant near the SLC24A5 gene (rs2675345) showed the strongest signal of association with M-Index (P = 4.0 x 10−30 in the pooled dataset). Variants in SLC24A5, SLC45A2 and OCA2 together account for a large proportion of skin pigmentation variance (11%). The effects of these variants on M-Index was modified by sex (P for interaction = 0.009). However, West African Ancestry (WAA) also accounts for a large proportion of M-Index variance (23%). M-Index also varies among AAs with high WAA and high Genetic Score calculated from top variants associated with M-Index, suggesting that other unknown genomic factors related to WAA are likely contributing to skin pigmentation variation. M-Index was not associated with serum 25(OH)D concentrations, but the Genetic Score was significantly associated with vitamin D deficiency (serum 25(OH)D levels less than 12 ng/mL) (OR, 1.30; 95% CI, 1.04–1.64). The findings support the hypothesis suggesting that skin pigmentation evolved responding to increased demand for subcutaneous vitamin D synthesis in high latitude environments.  相似文献   

13.
It is well documented that Vitamin D3 metabolites and synthetic analogs are metabolized to their epimers of the hydroxyl group at C-3 of the A-ring. We investigated the C-3 epimerization of Vitamin D3 metabolites in various cultured cells and basic properties of the enzyme responsible for the C-3 epimerization. 1alpha,25-Dihydroxyvitamin D3 [1alpha,25(OH)2D3], 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] were metabolized to the respective C-3 epimers in UMR-106 (rat osteosarcoma), MG-63 (human osteosarcoma), Caco-2 (human colon adenocarcinoma), LLC-PK1 (porcine kidney) and HepG2 (human hepatoblastoma)] cells, although the differences existed in the amount of each C-3 epimer formed with different cell types. In terms of maximum velocity (Vmax) and Michaelis constant (Km) values for the C-3 epimerization in microsome fraction of UMR-106 cells, 25(OH)D3 exhibited the highest specificity for the C-3 epimerization among 1alpha,25(OH)2D3, 25(OH)D3 and 24,25(OH)2D3. C-3 epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha --> beta) -hydroxysteroid epimerase (HSE) catalyzed the C-3 epimerization in vitro. Based on these results, the enzyme responsible for the C-3 epimerization of Vitamin D3 are thought to be different from already-known cytochrome P450-related Vitamin D metabolic enzymes and HSE.  相似文献   

14.
《Endocrine practice》2016,22(8):951-958
Objective: Vitamin D is important in bone health. However, potential relationships of concomitant vitamin D deficiency with growth hormone deficiency (GHD) and the possibility that vitamin D inadequacy may alter the skeletal effects of growth hormone (GH) replacement therapy have not been adequately evaluated.Methods: A prospective study was conducted in adult-onset GHD patients treated with recombinant human GH (rhGH) for 2 years. Trabecular bone score (TBS), lumbar spine (LS) bone mineral density (BMD), total hip (TH) BMD, and 25-hydroxyvitamin D (25(OH)D) levels were assessed at baseline and 24 months. The study cohort was divided based on 25(OH)D levels into 2 groups with the cutoff defined as the 50th percentile at each follow-up time point.Results: Fifty-seven patients (29 males/28 females, mean age 34.4 years) were studied. After 24 months of GH replacement, LS BMD increased by 7.6% and TH BMD increased by 4.5% (both P<.05), with no difference according to 25(OH)D levels. TBS increased (+1.39 ± 3.6%) in those whose 25(OH)D was above the 50th percentile but decreased (-1.36 ± 5.6%, P<.05) in the cohort below the 50th percentile of 25(OH)D. Positive correlations were observed between baseline levels of IGF-1 and 25(OH)D (R = 0.37, P<.001) and between 24-month 25(OH)D and TBS (R = 0.25, P<.05).Conclusion: A differential effect of GH on TBS change was observed; TBS increased only in the cohort with 25(OH)D above the 50th percentile. Vitamin D sufficiency may be required to obtain optimal effects of GH treatment on bone quality, as assessed by TBS, in GHD adults.Abbreviations:AO-GHD = adult-onset GHDBMD = bone mineral densityBMI = body mass indexCa = calciumCTx = carboxyterminal collagen crosslinksCV = coefficient of variationDXA = dual energy X-ray absorptiometryECLIA = enzyme-labeled chemiluminescent immunometric assayGH = growth hormoneGHD = growth hormone deficiencyIGF-1 = insulin-like growth factor 1LS BMD = lumbar spine BMDOC = osteocalcin25(OH)D = 25-hydroxyvitamin DP = phosphorusPTH = parathyroid hormonerhGH = recombinant human GHTBS = trabecular bone scoreTH BMD = total hip BMD  相似文献   

15.
Vitamin D deficiency is more common among African Americans (AAs) than among European Americans (EAs), and epidemiologic evidence links vitamin D status to many health outcomes. Two genome-wide association studies (GWAS) in European populations identified vitamin D pathway gene single-nucleotide polymorphisms (SNPs) associated with serum vitamin D [25(OH)D] levels, but a few of these SNPs have been replicated in AAs. Here, we investigated the associations of 39 SNPs in vitamin D pathway genes, including 19 GWAS-identified SNPs, with serum 25(OH)D concentrations in 652 AAs and 405 EAs. Linear and logistic regression analyses were performed adjusting for relevant environmental and biological factors. The pattern of SNP associations was distinct between AAs and EAs. In AAs, six GWAS-identified SNPs in GC, CYP2R1, and DHCR7/NADSYN1 were replicated, while nine GWAS SNPs in GC and CYP2R1 were replicated in EAs. A CYP2R1 SNP, rs12794714, exhibited the strongest signal of association in AAs. In EAs, however, a different CYP2R1 SNP, rs1993116, was the most strongly associated. Our models, which take into account genetic and environmental variables, accounted for 20 and 28 % of the variance in serum vitamin D levels in AAs and EAs, respectively.  相似文献   

16.
17.
Many studies have investigated the association between CYP1A1 rs1048943 and rs4646903 polymorphisms and laryngeal cancer risk, but their results have been inconsistent. The PubMed and CNKI were searched for case–control studies published up to 01 July 2015. Data were extracted and pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated. In this meta‐analysis, we assessed 10 published studies involving comprising 748 laryngeal cancer cases and 1558 controls of the association between CYP1A1 rs1048943 and rs4646903 polymorphisms and laryngeal cancer risk. For CYP1A1 rs1048943 of the homozygote G/G and G allele carriers (A/G + G/G) versus A/A, the pooled ORs were 1.77 (95% CI = 1.28–2.81, P = 0.007 for heterogeneity) and 1.86 (95% CI = 1.45–2.40, P = 0.000 for heterogeneity). For CYP1A1 rs4646903 of the homozygote G/G and G allele carriers (A/G + G/G) versus A/A, the pooled ORs were 1.53 (95% CI = 1.31–2.21, P = 0.012 for heterogeneity) and 1.33(95% CI = 1.04–1.71, P = 0.029 for heterogeneity). In the stratified analysis by ethnicity, the significantly risks were found among Asians for both the G allele carriers and homozygote G/G. However, no significant associations were found in Caucasian population all genetic models. These results from the meta‐analysis suggest that CYP1A1 rs1048943 and rs4646903 polymorphisms contribute to risk of laryngeal cancer among Asian populations.  相似文献   

18.

Background

To perform a comprehensive study on the relationship between vitamin D metabolism and the response to interferon-α-based therapy of chronic hepatitis C.

Methodology/Principal Findings

Associations between a functionally relevant polymorphism in the gene encoding the vitamin D 1α-hydroxylase (CYP27B1-1260 rs10877012) and the response to treatment with pegylated interferon-α (PEG-IFN-α) and ribavirin were determined in 701 patients with chronic hepatitis C. In addition, associations between serum concentrations of 25-hydroxyvitamin D3 (25[OH]D3) and treatment outcome were analysed. CYP27B1-1260 rs10877012 was found to be an independent predictor of sustained virologic response (SVR) in patients with poor-response IL28B genotypes (15% difference in SVR for rs10877012 genotype AA vs. CC, p = 0.02, OR = 1.52, 95% CI = 1.061–2.188), but not in patients with favourable IL28B genotype. Patients with chronic hepatitis C showed a high prevalence of vitamin D insufficiency (25[OH]D3<20 ng/mL) during all seasons, but 25(OH)D3 serum levels were not associated with treatment outcome.

Conclusions/Significance

Our study suggests a role of bioactive vitamin D (1,25[OH]2D3, calcitriol) in the response to treatment of chronic hepatitis C. However, serum concentration of the calcitriol precursor 25(OH)D3 is not a suitable predictor of treatment outcome.  相似文献   

19.
While Vitamin D insufficiency in the US and European population is rising, epidemiological studies suggest an inverse correlation between low serum levels of 25-hydroxyvitamin D(3) (25-OH-D(3)) and colorectal cancer incidence. The antimitotic, prodifferentiating and proapoptotic active metabolite 1alpha,25-dihydroxyvitamin D(3) (1,25-(OH)(2)-D(3)) is synthesized also by colonocytes, since these possess Vitamin D synthesizing (CYP27B1) and catabolic (CYP24) hydroxylases similar to the kidney. Early during colon tumor progression, expression of CYP27B1 and of the Vitamin D receptor increases, suggesting an autocrine/paracrine growth control in colon tissue as a physiological restriction against tumor progression. However, in human adenocarcinomas expression of the catabolic CYP24 is also enhanced when compared with adjacent normal mucosa. Therefore, to maintain colonic accumulation of 1,25-(OH)(2)-D(3) its catabolism needs to be restricted. Our studies in mice show that low nutritional calcium causes hyperproliferation of colon crypts and significant elevation of CYP24 expression, which can be completely abrogated by soy feeding. We suggest that phytoestrogens in soy, known to be estrogen receptor modulators, are responsible for decreased CYP24 expression. These results and our observation that 17beta-estradiol can elevate CYP27B1 expression in rectal tissue of postmenopausal women, may underlie the observed protective effect of estrogens against colorectal cancer in females.  相似文献   

20.
《Endocrine practice》2014,20(8):769-774
ObjectiveTo investigate the association between 25-hydroxyvitamin D [25(OH)D] levels prior to liver transplantation (LT) and the development of acute cellular rejection (ACR) within the first year post LT.MethodsThis retrospective study included 275 consecutive LTs performed in 262 patients at Mayo Clinic in Jacksonville, Florida over 13 months. A total of 149 patients met the inclusion criteria. The correlations between 25(OH)D levels and the development, severity, and number of biopsy-proven ACR episodes were assessed.ResultsThe prevalence of 25(OH)D levels <30 ng/ mL was 92%. No association was found between pre LT 25(OH)D levels and the diagnosis of ACR (P = .61). Mean ± SD pre LT 25(OH)D levels were 16.1 ± 6.8 ng/mL for 48 subjects with no rejection, 16.1 ± 8.2 ng/mL for those with a mild first episode of ACR (n = 58), and 18.4 ± 12.4 ng/ mL for those who experienced a moderate/severe first ACR (n = 39). However, in a subgroup analysis of patients with 25(OH)D levels <30 ng/mL, there was a statistically significant negative correlation (P = .0252) between 25(OH) D level and the ACR rate.ConclusionVitamin D insufficiency and deficiency prior to LT was prevalent in our cohort. There was no statistically significant association between low 25(OH)D levels and the diagnosis or severity of ACR or the number of rejection episodes within the first year post LT. However, there was a negative correlation between 25(OH)D levels below 30 ng/mL and the rate of ACR within 1 year post LT. (Endocr Pract. 2014;20:769-774)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号