首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wild-type strains of Zymomonas mobilis exhibit multiple antibiotic resistance and thus restrict the use of many broad-host-range plasmids in them as cloning vehicles. Antibiotic-sensitive mutants of Z. mobilis were isolated and used as hosts for the conjugal transfer of broad-host-range plasmids from Escherichia coli. Such antibiotic-sensitive strains can facilitate the application of broad-host-range plasmids to the study of Z. mobilis.  相似文献   

2.
Engineered zinc finger nucleases can stimulate gene targeting at specific genomic loci in insect, plant and human cells. Although several platforms for constructing artificial zinc finger arrays using "modular assembly" have been described, standardized reagents and protocols that permit rapid, cross-platform "mixing-and-matching" of the various zinc finger modules are not available. Here we describe a comprehensive, publicly available archive of plasmids encoding more than 140 well-characterized zinc finger modules together with complementary web-based software (termed ZiFiT) for identifying potential zinc finger target sites in a gene of interest. Our reagents have been standardized on a single platform, enabling facile mixing-and-matching of modules and transfer of assembled arrays to expression vectors without the need for specialized knowledge of zinc finger sequences or complicated oligonucleotide design. We also describe a bacterial cell-based reporter assay for rapidly screening the DNA-binding activities of assembled multi-finger arrays. This protocol can be completed in approximately 24-26 d.  相似文献   

3.
A total of 25 marine caulobacters were isolated from littoral marine sources. Several aspects of their physiology and morphology were examined, as well as their suitability for genetic manipulation in laboratory cultivation. Caulobacters were readily isolated from all sources, including samples from areas containing pollution-related organic compounds. All isolates grew best in media containing seawater, but eight strains grew if sea salts were replaced with NaCl alone, three strains grew at 1/10 the normal sea salt concentration, and one isolate grew, albeit poorly, in freshwater medium. Of the marine isolates, 12 strains grew under anaerobic conditions, indicating that some caulobacters are not obligately aerobic bacteria, as they are currently categorized. Although some freshwater caulobacters are able to oxidize manganese, this capability was not found in these marine caulobacters. Of the marine isolates, 10 strains were resistant to mercury chloride concentrations 10- to 20-fold greater than that tolerated by sensitive bacteria. However, a mercury reductase gene comparable with that found in R100-type plasmids was not detected by gene hybridization. With respect to the potential for genetic experimentation, most strains grew rapidly (3- to 4-h generation time at 30°C), producing colonies on solid media in 2 to 3 days. The isolates were sensitive to antibiotics commonly used in recombinant DNA experiments, and spontaneous drug-resistant mutants were selectable. Conjugal transfer of plasmids from Escherichia coli to several marine caulobacters was demonstrated for four broad-host-range plasmid incompatibility groups, by using both self-transmissible plasmids and cloning-oriented plasmids that require a helper plasmid. Conjugal transfer of broad-host-range plasmids between freshwater and marine caulobacters was also demonstrated in both directions. Native plasmids of approximately 100- to 150-kilobase sizes were found in 2 of the 25 marine Caulobacter strains. The native plasmids were present in relatively high copy number and appeared stable in laboratory culture. In short, the marine caulobacters appeared appropriate as candidates for genetic manipulation and the expression of selected genes in the marine environment.  相似文献   

4.
【目的】为齐整小核菌代谢工程研究建立高效的转录单元组装系统。【方法】通过应用Golden Gate技术,以mobius assembly为基础,分别设计并构建DNA元件标准化接口改造、单转录单元组装、应用质粒(多转录单元)组装等功能的载体,从而形成一套完整的多转录单元组装系统。【结果】构建了2个用于DNA元件标准化接口改造的Level 0载体,4个用于单转录单元组装的Level 1载体,4个用于应用质粒组装的Level 2载体和13个应用质粒组装的辅助质粒。然后应用此系统为齐整小核菌组装了若干经过标准化接口改造的DNA元件质粒、单转录单元质粒和硬葡聚糖相关基因的功能分析质粒。所构建的最终应用质粒可以同时适用于齐整小核菌的根癌农杆菌介导转化法、电穿孔转化法和原生质体转化法。【结论】此质粒系统具有强大的DNA设计、组装和容纳能力,为未来齐整小核菌代谢工程和功能基因组学研究提供了高效的质粒构建技术平台。  相似文献   

5.
Resistance to the toxic compound potassium tellurite (Telr) has been employed as a selection marker built into a set of transposon vectors and broad-host-range plasmids tailored for genetic manipulations of Pseudomonas strains potentially destined for environmental release. In this study, the activated Telr determinants encoded by the cryptic telAB genes of plasmid RK2 were produced, along with the associated kilA gene, as DNA cassettes compatible with cognate vectors. In one case, the Telr determinants were assembled between the I and O ends of a suicide delivery vector for mini-Tn5 transposons. In another case, the kilA and telAB genes were combined with a minimal replicon derived from a variant of Pseudomonas plasmid pPS10, which is able to replicate in a variety of gram-negative hosts and is endowed with a modular collection of cloning and expression assets. Either in the plasmid or in the transposon vector, the Telr marker was combined with a 12-kb DNA segment of plasmid pWW0 of Pseudomonas putida mt-2 encoding the upper TOL pathway enzymes. This allowed construction of antibiotic resistance-free but selectable P. putida strains with the ability to grow on toluene as the sole carbon source through an ortho-cleavage catabolic pathway.  相似文献   

6.
Conjugative plasmids play a very important role in bacterial adaptation through the dissemination of useful traits. Incompatibility group P-1 (IncP-1) plasmids exhibit an extreme broad-host-range among Gram-negative bacteria and known to be one of the major agents to disseminate various phenotypic traits such as antibiotic resistance and xenobiotic degradation. Although the plasmids are believed to be very stable in most Gram-negative bacteria, little is known about the factors that affect their stability in various hosts, allowing their persistence in bacterial population. Here we show that the stability of the cryptic IncP-1β plasmid pBP136 differed greatly in four different Escherichia coli K12 host backgrounds (MG1655, DH5α, EC100, and JM109), whereas the closely related plasmid pB10 was stable in all four strains. The supply of the kleF gene, which is involved in the stability of IncP-1 plasmids but absent in pBP136, did not improve the stability of the plasmid. Our findings suggest that persistence of IncP-1 plasmids in the absence of selection is affected by strain-specific factors.  相似文献   

7.
The auxin-inducible degron (AID) system has emerged as a powerful tool to conditionally deplete proteins in a range of organisms and cell types. Here, we describe a toolkit to augment the use of the AID system in Caenorhabditis elegans. We have generated a set of single-copy, tissue-specific (germline, intestine, neuron, muscle, pharynx, hypodermis, seam cell, anchor cell) and pan-somatic TIR1-expressing strains carrying a co-expressed blue fluorescent reporter to enable use of both red and green channels in experiments. These transgenes are inserted into commonly used, well-characterized genetic loci. We confirmed that our TIR1-expressing strains produce the expected depletion phenotype for several nuclear and cytoplasmic AID-tagged endogenous substrates. We have also constructed a set of plasmids for constructing repair templates to generate fluorescent protein::AID fusions through CRISPR/Cas9-mediated genome editing. These plasmids are compatible with commonly used genome editing approaches in the C. elegans community (Gibson or SapTrap assembly of plasmid repair templates or PCR-derived linear repair templates). Together these reagents will complement existing TIR1 strains and facilitate rapid and high-throughput fluorescent protein::AID tagging of genes. This battery of new TIR1-expressing strains and modular, efficient cloning vectors serves as a platform for straightforward assembly of CRISPR/Cas9 repair templates for conditional protein depletion.  相似文献   

8.
Plasmids are mobile genetic elements that play a key role in microbial ecology and evolution by mediating horizontal transfer of important genes, such as antimicrobial resistance genes. Many microbial genomes have been sequenced by short read sequencers and have resulted in a mix of contigs that derive from plasmids or chromosomes. New tools that accurately identify plasmids are needed to elucidate new plasmid-borne genes of high biological importance. We have developed Deeplasmid, a deep learning tool for distinguishing plasmids from bacterial chromosomes based on the DNA sequence and its encoded biological data. It requires as input only assembled sequences generated by any sequencing platform and assembly algorithm and its runtime scales linearly with the number of assembled sequences. Deeplasmid achieves an AUC–ROC of over 89%, and it was more accurate than five other plasmid classification methods. Finally, as a proof of concept, we used Deeplasmid to predict new plasmids in the fish pathogen Yersinia ruckeri ATCC 29473 that has no annotated plasmids. Deeplasmid predicted with high reliability that a long assembled contig is part of a plasmid. Using long read sequencing we indeed validated the existence of a 102 kb long plasmid, demonstrating Deeplasmid''s ability to detect novel plasmids.  相似文献   

9.
Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria   总被引:238,自引:0,他引:238  
N T Keen  S Tamaki  D Kobayashi  D Trollinger 《Gene》1988,70(1):191-197
Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404. The new plasmids pDSK509, pDSK519, and pRK415, have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria. Several new polylinker sites were added to the Escherichia coli plasmids pUC118 and pUC119, resulting in the new plasmids, pUC128 and pUC129. These plasmids facilitate the transfer of cloned DNA fragments to the broad-host-range vectors. Finally, the broad-host-range cosmid cloning vector pLAFR3 was improved by the addition of a double cos casette to generate the new plasmid, pLAFR5. This latter cosmid simplifies vector preparation and has permitted the rapid cloning of genomic DNA fragments generated with Sau3A. The resulting clones may be introduced into other Gram-negative bacteria by conjugation.  相似文献   

10.
Plasmids of Pseudomonas cepacia strains of diverse origins.   总被引:2,自引:1,他引:1       下载免费PDF全文
Thirty-seven strains of Pseudomonas cepacia from clinical, pharmaceutical-industrial, and environmental origins were analyzed for the presence of plasmid DNA by a modification of the rapid alkaline extraction method of Birnboim (H. C. Birnboim, Methods Enzymol. 100:243-255, 1983). Plasmids were present in 31 strains (84%) from all sources, with no one source showing less than 75% plasmid carriage among its strains. The plasmid profiles indicated that the presence of large plasmids (146 to 222 kb) was the norm. Those strains with greater antibiotic resistance were mainly in the clinical and pharmaceutical groups and carried large plasmids (222 kb) that appeared essentially identical by restriction digest analysis. The ability for conjugative transfer was shown with the broad-host-range plasmid R751 carrying the gene for resistance to trimethoprim, one of the few antimicrobial agents effective against P. cepacia. The plasmid was transferred from Pseudomonas aeruginosa to P. cepacia strains as well as from P. cepacia transconjugants to other P. cepacia strains.  相似文献   

11.
Various deletion mutants of the identical broad-host-range plasmids RP4 and RK2, obtained after conjugative transfer of these plasmids from Escherichia coli to Alcaligenes eutrophus H16, were tested with respect to their segregation behaviour. Although the parent plasmids and some of the deletion mutants were completely stable in both A. eutrophus and E. coli, other derivatives were lost under non-selective conditions. The analysis of these deletion mutants allowed the identification and mapping of a region encoding a partitioning system (par) between the tra2 region and the kanamycin resistance gene of RP4 (RK2). This area corresponds to the PstI-C restriction fragment of RP4 (RK2). Cloning of this fragment into several unstable vector plasmids including pBR322 and pACYC177 resulted in all cases in an increase of segregational stability. By insertion of the par-region into an unstable broad-host-range mobilizable plasmid and transfer to a series of gram-negative bacteria, it could be shown that the cloned par-region of RP4 is functional in a broad-host-range.  相似文献   

12.
Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment''s total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the “Rapid Annotation using the Subsystems Technology” server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population.  相似文献   

13.
Thirty-seven strains of Pseudomonas cepacia from clinical, pharmaceutical-industrial, and environmental origins were analyzed for the presence of plasmid DNA by a modification of the rapid alkaline extraction method of Birnboim (H. C. Birnboim, Methods Enzymol. 100:243-255, 1983). Plasmids were present in 31 strains (84%) from all sources, with no one source showing less than 75% plasmid carriage among its strains. The plasmid profiles indicated that the presence of large plasmids (146 to 222 kb) was the norm. Those strains with greater antibiotic resistance were mainly in the clinical and pharmaceutical groups and carried large plasmids (222 kb) that appeared essentially identical by restriction digest analysis. The ability for conjugative transfer was shown with the broad-host-range plasmid R751 carrying the gene for resistance to trimethoprim, one of the few antimicrobial agents effective against P. cepacia. The plasmid was transferred from Pseudomonas aeruginosa to P. cepacia strains as well as from P. cepacia transconjugants to other P. cepacia strains.  相似文献   

14.
Broad host range cloning vectors for gram-negative bacteria   总被引:9,自引:0,他引:9  
G S Sharpe 《Gene》1984,29(1-2):93-102
A series of cloning vectors has been constructed based on the broad-host-range plasmid R300B. One of these vectors, pGSS33, has a size of 13.4 kb and carries four antibiotic resistance genes [ampicillin (Apr), chloramphenicol (Cmr), streptomycin (Smr) and tetracycline (Tcr)], all of which have restriction sites for insertional inactivation. The derivation, structure and uses of the plasmids are described.  相似文献   

15.
Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare). Most long-read assemblies are clearly superior to the current barley reference sequence based on short-reads. Assemblies derived from accurate long reads excel in most metrics, but the CCS approach was the most cost-effective strategy for assembling tens of barley genomes. A downsampling analysis indicated that 20-fold CCS coverage can yield very good sequence assemblies, while even five-fold CCS data may capture the complete sequence of most genes. We present an updated reference genome assembly for barley with near-complete representation of the repeat-rich intergenic space. Long-read assembly can underpin the construction of accurate and complete sequences of multiple genomes of a species to build pan-genome infrastructures in Triticeae crops and their wild relatives.

A greatly improved reference genome sequence of barley was assembled from accurate long reads.  相似文献   

16.
The dissemination of antibiotic resistance genes among bacteria often occurs by means of plasmids. Wastewater treatment plants (WWTP) were previously recognized as hot spots for the horizontal transfer of genetic material. One of the plasmid groups that is often associated with drug resistance is the incompatibility group IncN. The aim of this study was to gain insights into the diversity and evolutionary history of IncN plasmids by determining and comparing the complete genome sequences of the four novel multi-drug resistance plasmids pRSB201, pRSB203, pRSB205 and pRSB206 that were exogenously isolated from the final effluent of a municipal WWTP. Their sizes range between 42,875 bp and 56,488 bp and they share a common set of backbone modules that encode plasmid replication initiation, conjugative transfer, and plasmid maintenance and control. All plasmids are transferable at high rates between Escherichia coli strains, but did not show a broad host range. Different genes conferring resistances to ampicillin, streptomycin, spectinomycin, sulfonamides, tetracycline and trimethoprim were identified in accessory modules inserted in these plasmids. Comparative analysis of the four WWTP IncN plasmids and IncN plasmids deposited in the NCBI database enabled the definition of a core set of backbone genes for this group. Moreover, this approach revealed a close phylogenetic relationship between the IncN plasmids isolated from environmental and clinical samples. Phylogenetic analysis also suggests the existence of host-specific IncN plasmid subgroups. In conclusion, IncN plasmids likely contribute to the dissemination of resistance determinants between environmental bacteria and clinical strains. This is of particular importance since multi-drug resistance IncN plasmids have been previously identified in members of the Enterobacteriaceae that cause severe infections in humans.  相似文献   

17.
The nucleotide sequence of the transfer (tra) region of the multiresistance broad-host-range Inc18 plasmid pIP501 was completed. The 8629-bp DNA sequence encodes 10 open reading frames (orf), 9 of them are possibly involved in pIP501 conjugative transfer. The putative pIP501 tra gene products show highest similarity to the respective ORFs of the conjugative Enterococcus faecalis plasmids pRE25 and pAMbeta1, and the Streptococcus pyogenes plasmid pSM19035, respectively. ORF7 and ORF10 encode putative homologues of type IV secretion systems involved in transport of effector molecules from pathogens to host cells and in conjugative plasmid transfer in Gram-negative (G-) bacteria. pIP501 mobilized non-selftransmissible plasmids such as pMV158 between different E. faecalis strains and from E. faecalis to Bacillus subtilis. Evidence for the very broad-host-range of pIP501 was obtained by intergeneric conjugative transfer of pIP501 to a multicellular Gram-positive (G+) bacterium, Streptomyces lividans, and to G- Escherichia coli. We proved for the first time pIP501 replication, expression of its antibiotic resistance genes as well as functionality of the pIP501 tra genes in S. lividans and E. coli.  相似文献   

18.
XerCD-dif site-specific recombination is a well characterized system, found in most bacteria and archaea. Its role is resolution of chromosomal dimers that arise from homologous recombination. Xer-mediated recombination is also used by several plasmids for multimer resolution to enhance stability and by some phage for integration into the chromosome. In the past decade, it has been hypothesized that an alternate and novel function exists for this system in the dissemination of genetic elements, notably antibiotic resistance genes, in Acinetobacter species. Currently the mechanism underlying this apparent genetic mobility is unknown. Multidrug resistant Acinetobacter baumannii is an increasingly problematic pathogen that can cause recurring infections. Sequencing of numerous plasmids from clinical isolates of A. baumannii revealed the presence of possible mobile modules: genes were found flanked by pairs of Xer recombination sites, called plasmid-dif (pdif) sites. These modules have been identified in multiple otherwise unrelated plasmids and in different genetic contexts suggesting they are mobile elements. In most cases, the pairs of sites flanking a gene (or genes) are in inverted repeat, but there can be multiple modules per plasmid providing pairs of recombination sites that can be used for inversion or fusion/deletion reactions; as many as 16 pdif sites have been seen in a single plasmid. Similar modules including genes for surviving environmental toxins have also been found in strains of Acinetobacter Iwoffi isolated from permafrost cores; this suggests that these mobile modules are an ancient adaptation and not a novel response to antibiotic pressure. These modules bear all the hallmarks of mobile genetic elements, yet, their movement has never been directly observed to date. This review gives an overview of the current state of this novel research field.  相似文献   

19.
Flavonoids are valuable natural products widely used in human health and nutrition. Recent advances in synthetic biology and metabolic engineering have yielded improved strain titers and yields. However, current fermentation strategies often require supplementation of expensive phenylpropanoic precursors in the media and separate evaluation of each strategy in turn as part of the flavonoid pathway, implicitly assuming the modifications are additive. In this study, an Escherichia coli fermentation system was developed to bypass both of these problems. An eight-step pathway, consisting of 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase (DAHPS), chorismate mutase/prephenate dehydratase (CM/PDT), phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), malonate synthetase, and malonate carrier protein, was assembled on four vectors in order to produce the flavonoid precursor (2S)-pinocembrin directly from glucose. Furthermore, a modular metabolic strategy was employed to identify conditions that optimally balance the four pathway modules. Once this metabolic balance was achieved, such strains were capable of producing 40.02 mg/L (2S)-pinocembrin directly from glucose. These results were attained by culturing engineered cells in minimal medium without additional precursor supplementation. The fermentation platform described here paves the way for the development of an economical process for microbial production of flavonoids directly from glucose.  相似文献   

20.
Plasmid pMG1 (65.1 kb) was isolated from a gentamicin-resistant Enterococcus faecium clinical isolate and was found to encode gentamicin resistance. EcoRI restriction of pMG1 produced five fragments, A through E, with molecular sizes of 50.2, 11.5, 2.0, 0.7, and 0.7 kb, respectively. The clockwise order of the fragments was ACDEB. pMG1 transferred at high frequency to Enterococcus strains in broth mating. pMG1 transferred between Enterococcus faecalis strains, between E. faecium strains, and between E. faecium and E. faecalis strains at a frequency of approximately 10−4 per donor cell after 3 h of mating. The pMG1 transfers were not induced by the exposure of the donor cell to culture filtrates of plasmid-free E. faecalis FA2-2 or an E. faecium strain. Mating aggregates were not observed by the naked eye during broth mating. Small mating aggregates of several cells in the broth matings were observed by microscopy, while no aggregates of donor cells which had been exposed to a culture filtrate of E. faecalis FA2-2 or an E. faecium strain were observed, even by microscopy. pMG1 DNA did not show any homology in Southern hybridization with that of the pheromone-responsive plasmids and broad-host-range plasmids pAMβ1 and pIP501. These results indicate that there is another efficient transfer system in the conjugative plasmids of Enterococcus and that this system is different from the pheromone-induced transfer system of E. faecalis plasmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号