首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immune system and the tumor interact closely during tumor development. Aberrantly expressed long non-coding RNAs (lncRNAs) may be potentially applied as diagnostic and prognostic markers for gastric cancer (GC). At present, the diagnosis and treatment of GC patients remain a formidable clinical challenge. The present study aimed to build a risk scoring system to improve the prognosis of GC patients. In the present study, ssGSEA was used to evaluate the infiltration of immune cells in GC tumor tissue samples, and the samples were split into a high immune cell infiltration group and a low immune cell infiltration group. About 1262 differentially expressed lncRNAs between the high immune cell infiltration group and the low immune cell infiltration group. About 3204 differentially expressed lncRNAs between GC tumor tissues and paracancerous tissues were identified. Then, 621 immune-related lncRNAs were screened using a Venn analysis based on the above results, and 85 prognostic lncRNAs were identified using a univariate Cox analysis. We constructed a prognostic signature using LASSO analysis and evaluated the predictive performance of the signature using ROC analysis. GO and KEGG enrichment analyses were performed on the lncRNAs using the R package, ‘clusterProfiler’. The TIMER online database was used to analyze correlations between the risk score and the abundances of the six types of immune cells. In conclusion, our study found that specific immune-related lncRNAs were clinically significant. These lncRNAs were used to construct a reliable prognostic signature and analyzed immune infiltrates, which may assist clinicians in developing individualized treatment strategies for GC patients.  相似文献   

2.
Background: The present study investigated the independent prognostic value of glycolysis-related long noncoding (lnc)RNAs in clear cell renal cell carcinoma (ccRCC).Methods: A coexpression analysis of glycolysis-related mRNAs–long noncoding RNAs (lncRNAs) in ccRCC from The Cancer Genome Atlas (TCGA) was carried out. Clinical samples were randomly divided into training and validation sets. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to establish a glycolysis risk model with prognostic value for ccRCC, which was validated in the training and validation sets and in the whole cohort by Kaplan–Meier, univariate and multivariate Cox regression, and receiver operating characteristic (ROC) curve analyses. Principal component analysis (PCA) and functional annotation by gene set enrichment analysis (GSEA) were performed to evaluate the risk model.Results: We identified 297 glycolysis-associated lncRNAs in ccRCC; of these, 7 were found to have prognostic value in ccRCC patients by Kaplan–Meier, univariate and multivariate Cox regression, and ROC curve analyses. The results of the GSEA suggested a close association between the 7-lncRNA signature and glycolysis-related biological processes and pathways.Conclusion: The seven identified glycolysis-related lncRNAs constitute an lncRNA signature with prognostic value for ccRCC and provide potential therapeutic targets for the treatment of ccRCC patients.  相似文献   

3.
Current research indicate that long noncoding RNAs (lncRNAs) are associated with the progression of various cancers and can be used as prognostic biomarkers. This study aims to construct a prognostic lncRNA signature for the risk assessment of Uterine corpus endometrial carcinoma (UCEC). The RNA-Seq expression profile and corresponding clinical data of UCEC patients obtained from The Cancer Genome Atlas database. First, some prognosis-related lncRNAs were obtained by univariate Cox analysis. The minimum absolute contraction and selection operator (LASSO) regression and the Cox proportional hazard regression method were used to further identify the lncRNA prognostic model. Finally, seven lncRNAs (AC110491.1, AL451137.1, AC005381.1, AC103563.2, AC007422.2, AC108025.2, and MIR7-3HG) were identified as potential prognostic factors. According to the model constructed by the above analysis, the risk score of each UCEC patient was calculated, and the patients were classified into high and low-risk groups. The low-risk group had significant survival benefits. Moreover, we constructed a nomogram that incorporated independent prognostic factors (age, tumor stage, tumor grade, and risk score). The c-index value for evaluating the predictive nomogram model was 0.801. The area under the curve was 0.797 (3-year survival). The calibration curve also showed that there was a satisfactory agreement between the predicted and observed values in the probability of 1-, 3-, and 5-year overall survival. On the basis of the coexpression relationship, we established a coexpression network of lncRNA-messenger RNA (mRNA) of the 7-lncRNA. The Kyoto Encyclopedia of Genes and Genomes analysis of the coexpressing mRNAs showed that the main pathways related to the 7-lncRNA signature were neuroactive ligand-receptor interaction, serotonergic synapse, and gastric cancer pathway. Therefore, our study revealed that the 7-lncRNA could be used to predict the prognosis of UCEC and for postoperative treatment and follow-up.  相似文献   

4.
Deregulated long noncoding RNAs (lncRNA) have been critically implicated in tumorigenesis and serve as novel diagnostic and prognostic biomarkers. Here we sought to develop a prognostic lncRNA signature in patients with head and neck squamous cell carcinoma (HNSCC). Original RNA-seq data of 499 HNSCC samples were retrieved from The Cancer Genome Atlas database, which was randomly divided into training and testing set. Univariate Cox regression survival analysis, robust likelihood-based survival model and random sampling iterations were applied to identify prognostic lncRNA candidates in the training cohort. A prognostic risk score was developed based on the Cox coefficient of four individual lncRNA imputed as follows: (0.14546 × expression level of RP11-366H4.1) + (0.27106 × expression level of LINC01123) + (0.54316 × expression level of RP11-110I1.14) + (−0.48794 × expression level of CTD-2506J14.1). Kaplan-Meier analysis revealed that patients with high-risk score had significantly reduced overall survival as compared with those with low-risk score when patients in training, testing, and validation cohorts were stratified into high- or low-risk subgroups. Multivariate survival analysis further revealed that this 4-lncRNA signature was a novel and important prognostic factor independent of multiple clinicopathological parameters. Importantly, ROC analyses indicated that predictive accuracy and sensitivity of this 4-lncRNA signature outperformed those previously well-established prognostic factors. Noticeably, prognostic score based on quantification of these 4-lncRNA via qRT-PCR in another independent HNSCC cohort robustly stratified patients into subgroups with high or low survival. Taken together, we developed a robust 4-lncRNA prognostic signature for HNSCC that might provide a novel powerful prognostic biomarker for precision oncology.  相似文献   

5.
Renal cell carcinoma (RCC) is the most common adult renal epithelial cancer susceptible to metastasis and patients with irresectable RCC always have a poor prognosis. Long noncoding RNAs (lncRNAs) have recently been documented as having critical roles in the etiology of RCC. Nevertheless, the prognostic significance of lncRNA-based signature for outcome prediction in patients with RCC has not been well investigated. Therefore, it is essential to identify a lncRNA-based signature for predicting RCC prognosis. In the current study, we comprehensively analyzed the RNA sequencing data of the three main pathological subtypes of RCC (kidney renal clear cell carcinoma [KIRC], kidney renal papillary cell carcinoma [KIRP], and kidney chromophobe carcinoma [KICH]) from The Cancer Genome Atlas (TCGA) database, and identified a 6-lncRNA prognostic signature with the help of a step-wise multivariate Cox regression model. The 6-lncRNA signature stratified the patients into low- and high-risk groups with significantly different prognosis. Multivariate Cox regression analysis showed that predictive value of the 6-lncRNA signature was independent of other clinical or pathological factors in the entire cohort and in each cohort of RCC subtypes. In addition, the three independent prognostic clinical factors (including age, pathologic stage III, and stage IV) was also stratified into low- and high-risk groups basis on the risk score, and the stratification analyses demonstrated that the high-risk score was a poor prognostic factor. In conclusion, these findings indicate that the 6-lncRNA signature is a novel prognostic biomarker for all three subtypes of RCC, and can increase the accuracy of predicting overall survival.  相似文献   

6.
Breast cancer, the most common cancer in women worldwide, is associated with high mortality. The long non-coding RNAs (lncRNAs) with a little capacity of coding proteins is playing an increasingly important role in the cancer paradigm. Accumulating evidences demonstrate that lncRNAs have crucial connections with breast cancer prognosis while the studies of lncRNAs in breast cancer are still in its primary stage. In this study, we collected 1052 clinical patient samples, a comparatively large sample size, including 13 159 lncRNA expression profiles of breast invasive carcinoma (BRCA) from The Cancer Genome Atlas database to identify prognosis-related lncRNAs. We randomly separated all of these clinical patient samples into training and testing sets. In the training set, we performed univariable Cox regression analysis for primary screening and played the model for Robust likelihood-based survival for 1000 times. Then 11 lncRNAs with a frequency more than 600 were selected for prediction of the prognosis of BRCA. Using the analysis of multivariate Cox regression, we established a signature risk-score formula for 11 lncRNA to identify the relationship between lncRNA signatures and overall survival. The 11 lncRNA signature was validated both in the testing and the complete set and could effectively classify the high-/low-risk group with different OS. We also verified our results in different stages. Moreover, we analyzed the connection between the 11 lncRNAs and the genes of ESR1, PGR, and Her2, of which protein products (ESR, PGR, and HER2) were used to classify the breast cancer subtypes widely. The results indicated correlations between 11 lncRNAs and the gene of PGR and ESR1. Thus, a prognostic model for 11 lncRNA expression was developed to classify the BRAC clinical patient samples, providing new avenues in understanding the potential therapeutic methods of breast cancer.  相似文献   

7.
Long non-coding RNAs (lncRNAs) are well known as crucial regulators to breast cancer development and are implicated in controlling autophagy. LncRNAs are also emerging as valuable prognostic factors for breast cancer patients. It is critical to identify autophagy-related lncRNAs with prognostic value in breast cancer. In this study, we identified autophagy-related lncRNAs in breast cancer by constructing a co-expression network of autophagy-related mRNAs-lncRNAs from The Cancer Genome Atlas (TCGA). We evaluated the prognostic value of these autophagy-related lncRNAs by univariate and multivariate Cox proportional hazards analyses and eventually obtained a prognostic risk model consisting of 11 autophagy-related lncRNAs (U62317.4, LINC01016, LINC02166, C6orf99, LINC00992, BAIAP2-DT, AC245297.3, AC090912.1, Z68871.1, LINC00578 and LINC01871). The risk model was further validated as a novel independent prognostic factor for breast cancer patients based on the calculated risk score by Kaplan-Meier analysis, univariate and multivariate Cox regression analyses and time-dependent receiver operating characteristic (ROC) curve analysis. Moreover, based on the risk model, the low-risk and high-risk groups displayed different autophagy and oncogenic statues by principal component analysis (PCA) and Gene Set Enrichment Analysis (GSEA) functional annotation. Taken together, these findings suggested that the risk model of the 11 autophagy-related lncRNAs has significant prognostic value for breast cancer and might be autophagy-related therapeutic targets in clinical practice.  相似文献   

8.
N6-methyladenosine (m6A) methyltransferase has been shown to be an oncogene in a variety of cancers. Nevertheless, the relationship between the long non-coding RNAs (lncRNAs) and hepatocellular carcinoma (HCC) remains elusive. We integrated the gene expression data of 371 HCC and 50 normal tissues from The Cancer Genome Atlas (TCGA) database. Differentially expressed protein-coding genes (DE-PCGs)/lncRNAs (DE-lncRs) analysis and univariate regression and Kaplan–Meier (K–M) analysis were performed to identify m6A methyltransferase-related lncRNAs. Three prognostic lncRNAs were selected by univariate and LASSO Cox regression analyses to construct the m6A methyltransferase-related lncRNA signature. Multivariate Cox regression analyses illustrated that this signature was an independent prognostic factor for overall survival (OS) prediction. The Gene Set Enrichment Analysis (GSEA) suggested that the m6A methyltransferase-related lncRNAs were involved in the immune-related biological processes (BPs) and pathways. Besides, we discovered that the lncRNAs signature was correlated with the tumor microenvironment (TME) and the expression of critical immune checkpoints. Tumor Immune Dysfunction and Exclusion (TIDE) analysis revealed that the lncRNAs could predict the clinical response to immunotherapy. Our study had originated a prognostic signature for HCC based on the potential prognostic m6A methyltransferase-related lncRNAs. The present study had deepened the understanding of the TME status of HCC patients and laid a theoretical foundation for the choice of immunotherapy.  相似文献   

9.
This study aimed to identify prognostic long noncoding RNAs (lncRNAs) signature for predicting the prognosis of patients with rectal cancer. LncRNA-sequencing data and clinicopathological data of patients with rectal cancer were retrieved from The Cancer Genome Atlas database. Univariate and multivariate Cox proportional hazards regression analysis, the least absolute shrinkage, and selection operator analysis and the Kaplan-Meier curve method were employed to identify prognostic lncRNAs and construct multi-lncRNA signature. Finally, five lncRNAs (AC079789.1, AC106900.2, AL121987.1, AP004609.1, and LINC02163) were identified to construct a five-lncRNA signature. According to the five-lncRNA signature, patients with rectal cancer were divided into a high-risk group and low-risk group. Patients with rectal cancer had significantly poorer overall survival in the high-risk group than in the low-risk group. We used a time-dependent receiver operating characteristic curve to assess the power of the five-lncRNA signature by calculating the area under the curve (AUC). The AUCs for predicting 3-year survival and 5-year survival were 0.742 and 0.935, respectively, which indicated a good performance of the five-lncRNA signature. The five-lncRNA signature was independently associated with the prognosis of patients with rectal cancer through using univariate and multivariate Cox regression analysis. The biological function of the five lncRNAs was enriched in some cancer-related biological processes and pathways by performing functional enrichment analysis of their correlated protein-coding genes. In conclusion, we developed a five-lncRNA signature as a potential indicator for rectal cancer.  相似文献   

10.
11.
Yu  Zhong Lin  Zhu  Zheng Ming 《Protoplasma》2022,259(4):1029-1045

The present paper aims to shed light on the influence of N6-methyladenosine (m6A) long non-coding RNAs (lncRNAs) and immune cell infiltration on colorectal cancer (CRC). We downloaded workflow-type data and xml-format clinical data on CRC from The Cancer Genome Atlas project. The relationship between lncRNA and m6A was identified by using Perl and R software. Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed. Lasso regression was utilized to construct a prognostic model. Survival analysis was used to explore the relationship between clusters of m6A lncRNAs and clinical survival data. Differential analysis of the tumor microenvironment and an immune correlation analysis were used to determine immune cell infiltration levels in different clusters and their correlation with clinical prognosis. The expression of lncRNA was tightly associated with m6A. The univariate Cox regression analysis showed that lncRNA was a risk factor for the prognosis. Differential expression analysis demonstrated that m6A lncRNAs were partially highly expressed in tumor tissue. m6A lncRNA-related prognostic model could predict the prognosis of CRC independently. “ECM_RECEPTOR_INTERACTION” was the most significantly enriched gene set. PARP8 was overexpressed in tumor tissue and high-risk cluster. CD4 memory T cells, activated resting NK cells, and memory B cells were highly clustered in the high-risk cluster. All of the scores were higher in the low-risk group. m6A lncRNA is closely related to the occurrence and progression of CRC. The corresponding prognostic model can be utilized to evaluate the prognosis of CRC. m6A lncRNA and related immune cell infiltration in the tumor microenvironment can provide novel therapeutic targets for further research.

  相似文献   

12.
Bladder cancer (BLCA) is one of the most common urological cancer with increasing cases and deaths every year. In the present study, we aim to construct an immune-related prognostic lncRNA signature (IRPLS) in bladder cancer (BLCA) patients and explore its immunogenomic implications in pan-cancers. First, the immune-related differentially expressed lncRNAs (IRDELs) were identified by ‘limma’ R package and the score of IRPLS in every patient were evaluated by Cox regression. The dysregulation of IRDELs expression between cancer and para-cancer normal tissues was validated through RT-qPCR. Then, we further explore the biological functions of a novel lncRNA from IRPLS, RP11-89 in BLCA using CCK8 assay, Transwell assay and Apoptosis analysis, which indicated that RP11-89 was able to promote cell proliferation and invasive capacity while inhibits cell apoptosis in BLCA. In addition, we performed bioinformatic methods and RIP to investigate and validate the RP11-89/miR-27a-3p/PPARγ pathway in order to explore the mechanism. Next, CIBERSORT and ESTIMATE algorithm were used to evaluate abundance of tumour-infiltrating immune cells and scores of tumour environment elements in BLCA with different level of IRPLS risk scores. Finally, multiple bioinformatic methods were performed to show us the immune landscape of these four lncRNAs for pan-cancers. In conclusion, this study first constructed an immune-related prognostic lncRNA signature, which consists of RP11-89, PSORS1C3, LINC02672 and MIR100HG and might shed lights on novel targets for individualized immunotherapy for BLCA patients.  相似文献   

13.
Long noncoding RNAs (lncRNAs) have recently emerged as important biomarkers of cancer progression. Here, we proposed to develop a lncRNA-based signature with a prognostic value for colorectal cancer (CRC) overall survival (OS). Through mining microarray datasets, we analyzed the lncRNA expression profiles of 122 patients with CRC from Gene Expression Omnibus. Associations between lncRNA and CRC OS were firstly evaluated through univariate Cox regression analysis. A random survival forest method was applied for further screening of the lncRNA signature, which resulted in eight lncRNAs, including PEG3-AS1, LOC100505715, MINCR, DBH-AS1, LINC00664, FAM224A, LOC642852, and LINC00662. Combination of the eight lncRNAs weighted by their multivariate Cox regression coefficients formed a prognostic signature, through which, we could divide the 122 patients with CRC into two subgroups with significantly different OS. Good robustness of the lncRNA signature's prognostic value was verified through an independent data set consisting of 55 patients with CRC. In addition, gene set enrichment analysis indicated the potential association between high prognostic value and oxygen metabolism-related processes. This result should indicate that lncRNAs could be a useful signature for CRC prognosis.  相似文献   

14.
Long noncoding RNAs (lncRNAs) show multiple functions, including immune response. Recently, the immune-related lncRNAs have been reported in some cancers. We first investigated the immune-related lncRNA signature as a potential target in hepatocellular carcinoma (HCC) survival. The training set (n = 368) and the independent external validation cohort (n = 115) were used. Immune genes and lncRNAs coexpression were constructed to identify immune-related lncRNAs. Cox regression analyses were perfumed to establish the immune-related lncRNA signature. Regulatory roles of this signature on cancer pathways and the immunologic features were investigated. The correlation between immune checkpoint inhibitors and this signature was examined. In this study, the immune-related lncRNA signature was identified in HCC, which could stratify patients into high- and low-risk groups. This immune-related lncRNA signature was correlated with disease progression and worse survival and was an independent prognostic biomarker. Our immune-related lncRNA signature was still a powerful tool in predicting survival in each stratum of age, gender, and tumor stage. This signature mediated cell cycle, glycolysis, DNA repair, mammalian target of rapamycin signaling, and immunologic characteristics (i.e., natural killer cells vs. Th1 cells down, etc). This signature was associated with immune cell infiltration (i.e., macrophages M0, Tregs, CD4 memory T cells, and macrophages M1, etc.,) and immune checkpoint blockade (ICB) immunotherapy-related molecules (i.e., PD-L1, PD-L2, and IDO1). Our findings suggested that the immune-related lncRNA signature had an important value for survival prediction and may have the potential to measure the response to ICB immunotherapy. This signature may guide the selection of the immunotherapy for HCC.  相似文献   

15.
Dysregulation of long noncoding RNAs (lncRNAs) has been found in a large number of human cancers, including colon cancer. Therefore, the implementation of potential lncRNAs biomarkers with prognostic prediction value are very much essential. GSE39582 data set was downloaded from database of Gene Expression Omnibus. Re-annotation analysis of lncRNA expression profiles was performed by NetAffx annotation files. Univariate and multivariate Cox proportional analyses helped select prognostic lncRNAs. Algorithm of random survival forest-variable hunting (RSF-VH) together with stepwise multivariate Cox proportional analysis were performed to establish lncRNA signature. The log-rank test was carried out to analyze and compare the Kaplan-Meier survival curves of patients’ overall survival (OS). Receiver operating characteristic (ROC) analysis was used for comparing the survival prediction regarding its specificity and sensitivity based on lncRNA risk score, followed by calculating the values of area under the curve (AUC). The single-sample GSEA (ssGSEA) analysis was used to describe biological functions associated with this signature. Finally, to determine the robustness of this model, we used the validation sets including GSE17536 and The Cancer Genome Atlas data set. After re-annotation analysis of lncRNAs, a total of 14 lncRNA probes were obtained by univariate and multivariate Cox proportional analysis. Then, the RSF-VH algorithm and stepwise multivariate Cox analysis helped to build a five-lncRNA prognostic signature for colon cancer. The patients in group with high risk showed an obviously shorter survival time compared with patients in group with low risk with AUC of 0.75. In addition, the five-lncRNA signature can be used to independently predict the survival of patients with colon cancer. The ssGSEA analysis revealed that pathways such as extracellular matrix-receptor interaction was activated with an increase in risk score. These findings determined the strong power of prognostic prediction value of this five-lncRNA signature for colon cancer.  相似文献   

16.
Endometrial carcinoma (EnCa) is one of the deadliest gynecological malignancies. The purpose of the current study was to develop an immune-related lncRNA prognostic signature for EnCa. In the current research, a series of systematic bioinformatics analyses were conducted to develop a novel immune-related lncRNA prognostic signature to predict disease-free survival (DFS) and response to immunotherapy and chemotherapy in EnCa. Based on the newly developed signature, immune status and mutational loading between high‑ and low‑risk groups were also compared. A novel 13-lncRNA signature associated with DFS of EnCa patients was ultimately developed using systematic bioinformatics analyses. The prognostic signature allowed us to distinguish samples with different risks with relatively high accuracy. In addition, univariate and multivariate Cox regression analyses confirmed that the signature was an independent factor for predicting DFS in EnCa. Moreover, a predictive nomogram combined with the risk signature and clinical stage was constructed to accurately predict 1-, 2-, 3-, and 5-year DFS of EnCa patients. Additionally, EnCa patients with different levels of risk had markedly different immune statuses and mutational loadings. Our findings indicate that the immune-related 13-lncRNA signature is a promising classifier for prognosis and response to immunotherapy and chemotherapy for EnCa.  相似文献   

17.
18.
Autophagy-related long non-coding RNAs (lncRNAs) disorders are related to the occurrence and development of breast cancer. The purpose of this study is to explore whether autophagy-related lncRNA can predict the prognosis of breast cancer patients. The autophagy-related lncRNAs prognostic signature was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression. We identified five autophagy-related lncRNAs (MAPT-AS1, LINC01871, AL122010.1, AC090912.1, AC061992.1) associated with prognostic value, and they were used to construct an autophagy-related lncRNA prognostic signature (ALPS) model. ALPS model offered an independent prognostic value (HR = 1.664, 1.381-2.006), where this risk score of the model was significantly related to the TNM stage, ER, PR and HER2 status in breast cancer patients. Nomogram could be utilized to predict survival for patients with breast cancer. Principal component analysis and Sankey Diagram results indicated that the distribution of five lncRNAs from the ALPS model tends to be low-risk. Gene set enrichment analysis showed that the high-risk group was enriched in autophagy and cancer-related pathways, and the low-risk group was enriched in regulatory immune-related pathways. These results indicated that the ALPS model composed of five autophagy-related lncRNAs could predict the prognosis of breast cancer patients.  相似文献   

19.
The aim of our study is to construct the competing endogenous RNA (ceRNA) network of head and neck squamous cell carcinoma (HNSCC) and identify key long noncoding RNAs (lncRNAs) to predict prognosis. The genes whose expression were differentially in HNSCC and normal tissues were explored by the Cancer Genome Atlas database. The ceRNA network was constructed by the Cytoscape software. The lncRNAs which could estimate the overall survival were explored from Cox proportional hazards regression. There are 1997, 589, and 82 mRNAs, lncRNAs, and miRNAs whose expression were statistically significant different, respectively. Then, the network between miRNA and mRNA or miRNA and lncRNA was constructed by miRcode, miRDB, TargetScan, and miRanda. Five mRNAs, 10 lncRNAs, and 3 miRNAs were associated with overall survival. Then, 11-lncRNAs were found to be prognostic factors. Therefore, our research analyzed the potential signature of novel 11-lncRNA as candidate prognostic biomarker from the ceRNA network for patients with HNSCC.  相似文献   

20.
Recent evidence suggests that long noncoding RNAs (lncRNAs) are essential regulators of many cancer-related processes, including cancer cell proliferation, invasion, and migration. There is thus a reason to believe that the detection of lncRNAs may be useful as a diagnostic and prognostic strategy for cancer detection, however, at present no effective genome-wide tests are available for clinical use, constraining the use of such a strategy. In this study, we performed a comprehensive assessment of lncRNAs expressed in samples in the head and neck squamous cell carcinoma (HNSCC) cohort available in The Cancer Genome Atlas database. A risk score (RS) model was constructed based on the expression data of these 15 lncRNAs in the validation data set of HNSCC patients and was subsequently validated in validation data set and the entire data set. We were able to stratify patients into high- and low-risk categories, using our lncRNA expression panel to determine an RS, with significant differences in overall survival (OS) between these two groups in our test set (median survival, 1.863 vs. 5.484 years; log-rank test, p < 0.001). We were able to confirm the predictive value of our 15-lncRNA signature using both a validation data set and a full data set, finding our signature to be reproducible and effective as a means of predicting HNSCC patient OS. Through the multivariate Cox regression and stratified analyses, we were further able to confirm that the predictive value of this RS was independent of other predictive factors such as clinicopathological parameters. The Gene set enrichment analysis revealed potential functional roles for these 15 lncRNAs in tumor progression. Our findings indicate that an RS established based on a panel of lncRNA expression signatures can effectively predict OS and facilitate patient stratification in HNSCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号