首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
White yam tissues naturally and artificially infected with root-knot nematodes were fixed, sectioned, and examined with a microscope. Infective second-stage juveniles of Meloidogyne incognita penetrated and moved intercellularly within the tuber. Feeding sites were always in the ground tissue layer where the vascular tissues are distributed in the tubers. Giant cells were always associated with xylem tissue. They were thin walled with dense cytoplasm and multinucleated. The nuclei of the giant cells were only half the size of those found in roots of infected tomato plants. Normal nematode growth and development followed giant cell formation. Females deposited eggs into a gelatinous egg mass within the tuber, and a necrotic ring formed around the female after eggs had been produced. Second-stage juveniles hatched, migrated, and re-infected other areas of the tuber. No males were observed from the tuber.  相似文献   

2.
A root-knot nematode from Portugal, Meloidogyne lusitanica n. sp., is described and illustrated from specimens obtained from olive trees (Olea europaea L.). Females of the new species have a characteristic perineal pattern with medium to high trapezoidal dorsal arch with distinct punctuations in the tail terminus area. The excretory pore is located posterior to the stylet, about 1.5-2.5 stylet lengths from the anterior end. The stylet is 17.1 μm long with pear-shaped knobs. Males have a rounded, posteriorly sloping head cap and head region not annulated. The robust stylet, 24.5 μ long, has large, elongate knobs. Mean length of the second-stage juveniles is 449.5 μm, stylet length 14.2 μm, and tail length 44.1 μm. Scanning electron microscope observations provide further details of perineal patterns and head and stylet morphology of females, males, and second-stage juveniles. Meloidogyne lusitanica n. sp. did not reproduce on any of the differential hosts used to separate the four most common Meloidogyne species. The common name "olive root-knot nematode" is proposed for M. lusitanica n. sp.  相似文献   

3.
In-vitro methods were developed to test fungi for production of metabolites affecting nematode egg hatch and mobility of second-stage juveniles. Separate assays were developed for two nematodes: root-knot nematode (Meloidogyne incognita) and soybean cyst nematode (Heterodera glycines). For egg hatch to be successfully assayed, eggs must first be surface-disinfested to avoid the confounding effects of incidental microbial growth facilitated by the fungal culture medium. Sodium hypochlorite was more effective than chlorhexidine diacetate or formaldehyde solutions at surface-disinfesting soybean cyst nematode eggs from greenhouse cultures. Subsequent rinsing with sodium thiosulfate to remove residual chlorine from disinfested eggs did not improve either soybean cyst nematode hatch or juvenile mobility. Soybean cyst nematode hatch in all culture media was lower than in water. Sodium hypochlorite was also used to surface-disinfest root-knot nematode eggs. In contrast to soybean cyst nematode hatch, root-knot nematode hatch was higher in potato dextrose broth medium than in water. Broth of the fungus Fusarium equiseti inhibited root-knot nematode egg hatch and was investigated in more detail. Broth extract and its chemical fractions not only inhibited egg hatch but also immobilized second-stage juveniles that did hatch, confirming that the fungus secretes nematode-antagonistic metabolites.  相似文献   

4.
The interaction between vesicular-arbuscular mycorrhizal (VAM) fungi and the root-knot nematode (Meloidogyne hapla) was investigated using both nematode-susceptible (Grasslands Wairau) and nematode-resistant (Nevada Synthetic XX) cultivars of alfalfa (Medicago sativa) at four levels of applied phosphate. Mycorrhizal inoculation improved plant growth and reduced nematode numbers and adult development in roots in dually infected cultures of the susceptible cultivar. The tolerance of plants to nematode infection and development when preinfected with mycorrhizal fungi was no greater than when they were inoculated with nematodes and mycorrhizal fungi simultaneously. Growth of plants of the resistant cultivar was unaffected by nematode inoculation but was improved by mycorrhizal inoculation. Numbers of nematode juveniles were lower in the roots of the resistant than of the susceptible cultivar and were further reduced by mycorrhizal inoculation, although no adult nematodes developed in any resistant cultivar treatment. Inoculation of alfalfa with VAM fungi increased the tolerance and resistance of a cultivar susceptible to M. hapla and improved the resistance of a resistant cultivar.  相似文献   

5.
The influence of plant resistance on the size of individual root-knot nematodes was determined in greenhouse experiments. Five genotypes of alyceclover were inoculated with second-stage juveniles of Meloidogyne incognita race 3 or M. arenaria race 1. Plants were harvested at selected intervals and stained for detection of the nematodes, which were dissected from the roots. Length, width, and sagittal-sectional area of each animal were measured using an image-analysis system, and areas of nematodes in all stages were compared at different times and across alyceclover lines. Nematodes feeding on roots of resistant lines were consistently smaller than those on susceptible plants, with significant differences in growth detected after the final molt. Similar results were observed with both nematode species.  相似文献   

6.
High infection rates of European sea rocket feeder roots by an unknown root-knot nematode were found in a coastal dune soil at Cullera (Valencia) in central eastern Spain. Morphometry, esterase and malate dehydrogenase electrophoretic phenotypes and phylogenetic trees demonstrated that this nematode species differs clearly from other previously described root-knot nematodes. Studies of host-parasite relationships showed a typical susceptible reaction in naturally infected European sea rocket plants and in artificially inoculated tomato (cv. Roma) and chickpea (cv. UC 27) plants. The species is herein described and illustrated and named as Meloidogyne dunensis n. sp. The new root-knot nematode can be distinguished from other Meloidogyne spp. by: (i) perineal pattern rounded-oval, formed of numerous fine dorsal and ventral cuticle striae and ridges, lateral fields clearly visible; (ii) female excretory pore at the level of stylet knobs, EP/ST ratio 1.6; (iii) second-stage juveniles with hemizonid located 1 to 2 annuli anteriorly to excretory pore and long, narrow, tapering tail; and (iv) males with lateral fields composed of four incisures anteriorly and posteriorly, while six distinct incisures are observed for large part at mid-body. Phylogenetic trees derived from distance and maximum parsimony analyses based on 18S, ITS1–5.8S-ITS2 and D2-D3 of 28S rDNA showed that M. dunensis n. sp. can be differentiated from all described root-knot nematode species, and it is clearly separated from other species with resemblance in morphology, such as M. duytsi, M. maritima, M. mayaguensis and M. minor.  相似文献   

7.
A root-knot nematode parasitizing coffee in Paran  State, Brazil, is described as Meloidogyne paranaensis n. sp. The suggested common name is Paraná coffee root-knot nematode. The perineal pattern is similar to that of M. incognita; the labial disc and medial lips of the female are fused and asymmetric and rectangular; the lateral lips are small, triangular, and fused laterally with the head region. The female stylet is 15.0-17.5 μm long, with broad, distinctly set-off knobs; the distance from the dorsal esophageal gland orifice (DGO) to the stylet base is 4.2-5.5 μm. Males have a high, round head cap continuous with the body contour. The labial disc is fused with the medial lips to form an elongate lip structure. The head region is frequently marked by an incomplete annulation. The stylet is robust, 20-27 μm long, usually with round to transversely elongate knobs, sometimes with one or two projections protruding from the shaft. The stylet length of second-stage juveniles is 13-14 μm, the distance of the DGO to the stylet base is 4.0-4.5 μm, and the tail length is 48-51 μm. Biochemically, the esterase (F₁) and malate dehydrogenase (N₁) phenotypes are the most useful characters to differentiate M. paranaensis from other species. However, the esterase phenotype appears similar to that of M. konaensis. Reproduction is by mitotic parthenogenesis, 3n = 50-52. In differential host tests, tobacco, watermelon, and tomato were good hosts, whereas cotton, pepper, and peanut were nonhosts.  相似文献   

8.
Cotton farmers in Missouri commonly apply a single rate of aldicarb throughout the field at planting to protect their crop from Meloidogyne incognita, even though these nematodes are spatially aggregated. Our purpose was to determine the effect of site-specific application of aldicarb on cotton production in a field infested with these nematodes in 1997 and 1998. Cotton yields were collected from sites not treated with aldicarb (control), sites receiving aldicarb at the standard recommended rate of 0.58 kg a.i./ha, and sites receiving specific aldicarb rates based on the soil population densities of second-stage infective juveniles of root-knot nematode. Yields for the standard rate and site-specific rate treatments were similar and greater (P ≤ 0.05) than the control treatment. Less aldicarb was used for the site-specific than the uniform-rate treatment each year—46% less in 1997 and 61% less in 1998. Costs associated with the site-specific treatment were very high compared with the uniform-rate treatment due to a greater number of soil samples analyzed for nematodes. Site-specific application of aldicarb for root-knot nematode management in cotton may pose fewer environmental risks than the uniform-rate application of aldicarb.  相似文献   

9.
Host suitability of olive cultivars Arbequina and Picual to several plant-parasitic nematodes was studied under controlled conditions. Arbequina and Picual were not suitable hosts for the root-lesion nematodes Pratylenchus fallax, P. thornei, and Zygotylenchus guevarai. However, the ring nematode Mesocriconema xenoplax and the spiral nematodes Helicotylenchus digonicus and H. pseudorobustus reproduced on both olive cultivars. The potential of Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica, as well as P. vulnus and P. penetrans to damage olive cultivars, was also assessed. Picual planting stocks infected by root-knot nematodes showed a distinct yellowing affecting the uppermost leaves, followed by a partial defoliation. Symptoms were more severe on M. arenaria and M. javanica-infected plants than on M. incognita-infected plants. Inoculation of plants with 15,000 eggs + second-stage juveniles/pot of these Meloidogyne spp. suppressed the main height of shoot and number of nodes of Arbequina, but not Picual. Infection by each of the two lesion nematodes (5,000 nematodes/pot) or by each of the three Meloidogyne spp. suppressed (P < 0.05) the main stem diameter of both cultivars. On Arbequina, the reproduction rate of Meloidogyne spp. was higher (P < 0.05) than that of Pratylenchus spp.; on Picual, Pratylenchus spp. reproduction was higher (P < 0.05) than that of Meloidogyne spp.  相似文献   

10.
The nature of resistance in Cucumis ficifolius and C. metuliferus to the root-knot nematode, Meloidogyne incognita acrita, was studied under greenhouse conditions. Although as many larvae penetrated the roots of these species as those of the susceptible C. melo, few developed to the adult female stage. Resistance in C. ficifolius and C. metuliferus was associated with hindrance of larval development beyond the second stage, delayed development of larvae to adults and stimulation toward maleness. Tissue necrosis or hypersensitivity was not associated with larval penetration. Comparisons of the histopathology of 26-day-old infections of C. melo and C. metuliferus roots showed no observable differences in the type of giant cell development in regions of roots associated with adult females. However, in C. rnetuliferus immature nematodes were associated with small giant cells which were limited to a few cells near the head of the nematode.  相似文献   

11.
On a few occasions, soybeans with broken root tips were included in tests to evaluate resistance to Heterodera glycines. Although females developed on these plants, the numbers tended to be lower than on similarly treated intact roots. To test the possibility that removal of the root meristem affected nematode development, a culture system using pruned soybeans was devised that permitted access to the roots without disturbing the plants. Treatments included removal of 2 mm of root tip at various times ranging from 24 hours before to 10 days after inoculation, or roots left intact. In each experiment, all roots were inoculated at the same time with equal numbers of freshly hatched second-stage juveniles of Heterodera glycines. No differences in nematode development were detected in plants with root tips removed after inoculation compared to the control. When tips were removed at or before inoculation, fewer juveniles entered roots and relatively fewer nematodes developed. Penetration levels and development correlated with root tip removal such that progressively fewer nematodes entered roots and relatively greater numbers of nematodes remained undeveloped as the time interval between root tip removal and inoculation was increased.  相似文献   

12.
The life history and feeding habits of Lasioseius scapulatus, an ascid predator and potential biocontrol agent of nematodes, was examined. Reproduction was asexual, and the life cycle was 8-10 days at room temperature. Life history consisted of the egg, protonymph, deutonymph, and adult. Both nymphal stages and the adult captured and consumed nematodes. Two fungal genera and eight genera of nematodes were suitable food sources. Second-stage root-knot nematode juveniles were eaten, but eggs and adult females were not. The mite fed voraciously on nematodes and drastically reduced Aphelenchus avenae populations in vitro. It is suggested that mites are of considerable importance in the ecology of certain nematodes.  相似文献   

13.
Root-knot nematode is an important pest in agricultural production worldwide. Crop rotation is the only management strategy in some production systems, especially for resource poor farmers in developing countries. A series of experiments was conducted in the laboratory with several leguminous cover crops to investigate their potential for managing a mixture of root-knot nematodes (Meloidogyne arenaria, M. incognita, M. javanica). The root-knot nematode mixture failed to multiply on Mucuna pruriens and Crotalaria spectabilis but on Dolichos lablab the population increased more than 2- fold when inoculated with 500 and 1,000 nematodes per plant. There was no root-galling on M. pruriens and C. spectabilis but the gall rating was noted on D. lablab. Greater mortality of juvenile root-knot nematodes occurred when exposed to eluants of roots and leaves of leguminous crops than those of tomato; 48.7% of juveniles died after 72 h exposure to root eluant of C. spectabilis. The leaf eluant of D. lablab was toxic to nematodes but the root eluant was not. Thus, different parts of a botanical contain different active ingredients or different concentrations of the same active ingredient. The numbers of root-knot nematode eggs that hatched in root exudates of M. pruriens and C. spectabilis were significantly lower (20% and 26%) than in distilled water, tomato and P. vulgaris root exudates (83%, 72% and 89%) respectively. Tomato lacks nematotoxic compounds found in M. pruriens and C. spectabilis. Three months after inoculating plants with 1,000 root-knot nematode juveniles the populations in pots with M. pruriens, C. spectabilis and C. retusa had been reduced by approximately 79%, 85% and 86% respectively; compared with an increase of 262% nematodes in pots with Phaseolus vulgaris. There was significant reduction of 90% nematodes in fallow pots with no growing plant. The results from this study demonstrate that some leguminous species contain compounds that either kill root-knot nematodes or interfere with hatching and affect their capacity to invade and develop within their roots. M. pruriens, C. spectabilis and C. retusa could be used with effect to decrease a mixed field populations of root-knot nematodes.  相似文献   

14.
The endoparasitic nematophagous fungus Meria coniospora reduced root-knot nematode galling on tomatoes in greenhouse pot trials. The fungus was introduced to pots by addition of conidia at several inoculum levels directly to the soil or addition of nematodes infected with M. coniospora to the soil; both methods reduced root galling by root-knot nematodes. These studies represent a part of a recently initiated effort to evaluate the potential of endoparasitic nematophagous fungi for biocontrol of nematodes.  相似文献   

15.
Effects of gamma-irradiation on the root-knot nematode Meloidogyne javanica were investigated. A dose of 7.5 kGy killed all second-stage juveniles (J2) within 1 day after treatment. Egg hatch was completely inhibited at 6.25 kGy. A bioassay on tomato measuring galling and egg production was used to determine the infectivity of irradiated J2 and J2 hatched from irradiated eggs. The J2 and eggs irradiated with a dose of 4.25 kGy did not induce galls or reproduce on tomato plants. When nematodes were exposed to combined irradiation and heat treatment, no synergistic effect on J2 or eggs was measured. Heat treatment at 49° C for 10 minutes or 20 minutes without irradiation immobilized J2 and prevented egg development. Irradiation rates needed to kill or incapacitate M. javanica were high and may be impractical as a quarantine measure.  相似文献   

16.
Head shape and stylet morphology of second-stage juveniles of one population each of M. incognita, M. javanica, M. arenaria, and M. hapla were compared by light microscopy. Excised stylets of each species were also compared by scanning electron microscopy (SEM). Differences in head morphology were observed only between M. hapla and the other three species. In SEM, differences in stylet size, shape, and relative distance of the dorsal esophageal gland orifice to the base of the stylet were evident. Differences in stylet morphology between M. incognita and M. javanica could not he detected by light microscopy, but M. arenaria and M. hapla could be distinguished from each other and from the other two species. Head shape and styler morphology of second-stage juveniles are considered useful taxonomic characters.  相似文献   

17.
Peanut fields in four governorates of Egypt were surveyed to identify species of Meloidogyne present. Fourteen populations obtained from peanut roots were all identified as M. javanica based on perineal patterns, stylet and body lengths of second-stage juveniles, esterase phenotypes, and restriction fragment length polymorphisms of mtDNA. Three of 14 populations, all from contiguous fields in the Behara governorate, had individuals with a unique two-isozyme esterase phenotype. All populations of M. javanica tested on peanut had levels of reproduction on the M. arenaria-susceptible peanut cultivar Florunner that were not different from M. arenaria (P = 0.05), and had lower levels of reproduction on the M. arenaria-resistant genotype TxAG-7 than on Florunner (P = 0.05). Reproduction of the five Egyptian populations of M. javanica tested was lower on root-knot nematode resistant tomato cultivars Better Boy and Celebrity than on the root-knot nematode susceptible cultivar Rutgers (P = 0.05). These data are evidence that some populations of M. javanica are parasitic on peanut and that the peanut and tomato genotypes resistant to M. arenaria are also resistant to these populations of M. javanica.  相似文献   

18.
Morphological comparisons with light microscopy and scanning electron microscopy were made among second-stage juveniles (J2) and males of several isolates of the three subspecies of the tobacco cyst nematode complex, Globodera tabacum sspp. tabacum, virginiae, and solanacearum. Observations focused on the anterior region, (including head shape, lip pattern, and stylet morphology) and the tail region (including tail shape in J2 and spicules in males). The three subspecies could not be separated on the basis of any of these characters.  相似文献   

19.
Two Hawaiian isolates of Steinernema feltiae MG-14 and Heterohabditis indica MG-13, a French isolate of S. feltiae SN, and a Texan isolate of S. riobrave TX were tested for their efficacy against the root-knot nematode, Meloidogyne javanica, in the laboratory and greenhouse. Experiments were conducted to investigate the effects of treatment application time and dose on M. javanica penetration in soybean, and egg production and plant development in tomato. Two experiments conducted to assess the effects of entomopathogenic nematode application time on M. javanica penetration demonstrated that a single application of 10⁴ S. feltiae MG-14 or SN infective juveniles per 100 cm³ of sterile soil, together with 500 (MG-14) or 1,500 (SN) second-stage juveniles of M. javanica, reduced root penetration 3 days after M. javanica inoculation compared to that of a water treatment. Entomopathogenic nematode infective juveniles applied to assess the effects on M. javanica egg production did not demonstrate a significant reduction compared to that of the water control treatment. There was no dose response effect by Steinernema spp. On M. javanica root penetration or egg production. Steinernema spp. did not affect the growth or development of M. javanica-infected plants, but H. indica MG-13-treated plants had lower biomass than untreated plants infected with M. javanica. Infective juveniles of S. riobrave TX, S. feltiae SN, and MG-14 but not those of H. indica MG-13 were found inside root cortical tissues of M. javanica-infected plants. Entomopathogenic nematode antagonism to M. javanica on soybean or tomato was insufficient in the present study to provide a consistent level of nematode suppression at the concentrations of infective juveniles applied.  相似文献   

20.
Two years of giant star grass, Cynodon nlemluensis var. nlemfuensis, in a field plot markedly reduced the incidence of the root-knot nematodes. Tomato planted following the grass showed very little or no root galling and the yield was thrice that of tomato planted on an adjacent field plot previously cropped to tomato. Replicated greenhouse experiments indicated that six varieties of Cynodon were resistant to root-knot nematode but it took up to 6 months of grass growth to appreciably lower the nematode population. The nematodes were eliminated from the soil by all the six grass varieties after 18 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号