首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Bystander effects in radiation-induced genomic instability   总被引:4,自引:0,他引:4  
Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.  相似文献   

2.
Snyder AR  Morgan WF 《DNA Repair》2005,4(9):958-970
The relatively high frequency with which ionizing radiation induces genomic instability suggests that a gene mutation occurring after irradiation is an unlikely cause of the phenotype. To search for mechanism(s) of initiation and perpetuation of this instability phenotype, gene expression profiles of clones exhibiting delayed chromosomal instability were analyzed. Microarray analysis using two pools of isogenic radiation-induced chromosomally unstable clones compared to an irradiated but chromosomally stable clone uncovered a set of 68 differentially expressed genes using two methods of analysis. Unexpectedly, all 68 genes were under-expressed relative to the chromosomally stable reference clone. Further analysis of the candidates placed the differentially expressed genes into pathways implicating differential MAP kinase signaling, ubiquitin/proteasome function, DNA repair, cell cycle control, lipid signaling, nucleotide metabolism, and other potentially disrupted pathways. Validation studies using northern and western blotting, and functional assays concluded that although differences in some of these pathways exist, no single gene or molecular pathway was found to be differentially regulated in all of the chromosomally unstable clones tested. Inferred from these data is that there are multiple potential molecular pathways and/or events that maintain the unstable phenotype, and no single expression pattern is linked to instability in the unstable clones analyzed.  相似文献   

3.
Exposure to ionizing radiation can induce a heritable change in the unirradiated progeny of irradiated cells. This non-targeted effect of ionizing radiation manifests as genomic instability, and although there is some debate as to the role of genomic instability in the carcinogenic process, it is thought by some to be an early step in radiation carcinogenesis. Although the mechanism of induction of genomic instability is not clearly understood, evidence suggests that secreted factors from irradiated cells may be involved. We have previously identified another non-targeted effect of ionizing radiation, the death-inducing effect. Exposure of unirradiated GM10115 cells to medium from chromosomally unstable clones was generally found to be cytotoxic. However, occasionally cells will survive in medium from unstable clones and can be clonally expanded. The absolute yield of survivors is independent of the initial number of cells plated when cell densities reached 5,000 or more cells/dish. After cytogenetic analysis of the surviving colonies, we found chromosomal instability in three of 40 clones analyzed, while some clones exhibited increased micronucleus frequency and HPRT mutation frequency. These data suggest that our chromosomally unstable GM10115 cells secrete factors that are cytotoxic to the majority of stable, parental cells but are also capable of inducing a heritable change in some of the survivors that can manifest as delayed genomic instability. These results suggest a mechanism whereby instability can be perpetuated through the influences of potentially cytotoxic factors produced by genomically unstable clones.  相似文献   

4.
Radiation-induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear; however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation-induced genomic instability we have evaluated the mitochondrial subproteome and performed quantitative mass spectrometry analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and upregulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype, and evaluation of gene and microRNA expression suggests that epigenetics play a role in the phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under suboptimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.  相似文献   

5.
Radiation-induced genomic instability (RIGI) manifests in the progeny of cells surviving ionizing radiation (IR), and can be measured using such endpoints as delayed mutation, micronuclei formation, and chromosomal instability. The frequency of RIGI is relatively high, exceeding the gene mutation rate of IR by orders of magnitude, leading to conjecture that a gene mutation is not the cause of the phenotype. We have started to explore whether differential gene expression patterns are associated with the instability phenotype, in order to shed light on its initiation and perpetuation. Using GM10115 human-hamster hybrid-derived chromosomally stable and radiation-induced unstable clones, gene expression patterns were analyzed using microarray analysis. Two methods were used to find differentially expressed genes, and all candidate genes identified by these methods were under-expressed relative to the chromosomally stable reference sample. Among this set differentially expressed genes identified were two candidates with a relationship to the ubiquitin/proteasome pathway. While follow-up gene expression analyses have confirmed the under-expression of these two genes in some of our chromosomally unstable clones, preliminary functional studies have been unable to demonstrate a link to instability. It is anticipated that as we apply this technology to the study of radiation-induced genomic instability, clues to its onset will be revealed, ultimately contributing to a greater understanding of the mechanisms of radiation carcinogenesis.  相似文献   

6.
Radiation induced genomic instability can be perpetuated over time by the transmission of soluble factors. This can occur via cell-to-cell gap junction communication or the secretion/shedding of soluble factors. We have investigated whether our radiation induced chromosomally unstable GM10115 human–hamster hybrid clones secrete factors that can perpetuate the instability phenotype over time. These clones do not have functional gap junctions, but do secrete significant amounts of Interleukin 8 (IL-8) into the culture medium. We then determined whether IL-8 could initiate and or perpetuate genomic instability over time in parental GM10115 cells. Contrary to our hypothesis, IL-8 could induce DNA damage, but was not responsible for the unstable phenotype. Instead it appears that IL-8 secretion provides a pro-survival function in cells that are chromosomally unstable and generally fail to thrive.  相似文献   

7.
Delayed reproductive cell death or lethal mutations in the survivors of irradiated cells is a well-characterized end point associated with radiation-induced genomic instability. Although the mechanism for this delayed lethality has not been identified, it is thought to be a means of eliminating cells that have sustained extensive damage, thus preventing tissue disruption after radiation exposure. In this study we have tested the hypothesis that delayed reproductive cell death in chromosomally unstable GM10115 clones is due to persistently increased levels of apoptosis. Evidence for differences in apoptosis in two representative genomically unstable clones after irradiation is presented. In addition, one of the unstable clones was found to have abnormal levels of apoptosis after radiation exposure. An understanding of apoptosis in genomically unstable clones may provide insight into the maintenance of genomic instability and the mechanism by which genomically unstable cells evade cell death, potentially contributing to carcinogenesis.  相似文献   

8.
NBL2 is a tandem 1.4-kb DNA repeat, whose hypomethylation in hepatocellular carcinomas was shown previously to be an independent predictor of disease progression. Here, we examined methylation of all cytosine residues in a 0.2-kb subregion of NBL2 in ovarian carcinomas, Wilms' tumors, and diverse control tissues by hairpin-bisulfite PCR. This new genomic sequencing method detects 5-methylcytosine on covalently linked complementary strands of a DNA fragment. All DNA clones from normal somatic tissues displayed symmetrical methylation at seven CpG positions and no methylation or only hemimethylation at two others. Unexpectedly, 56% of cancer DNA clones had decreased methylation at some normally methylated CpG sites as well as increased methylation at one or both of the normally unmethylated sites. All 146 DNA clones from 10 cancers could be distinguished from all 91 somatic control clones by assessing methylation changes at three of these CpG sites. The special involvement of DNA methyltransferase 3B in NBL2 methylation was indicated by analysis of cells from immunodeficiency, centromeric region instability, and facial anomalies syndrome patients who have mutations in the gene encoding DNA methyltransferase 3B. Blot hybridization of 33 cancer DNAs digested with CpG methylation-sensitive enzymes confirmed that NBL2 arrays are unusually susceptible to cancer-linked hypermethylation and hypomethylation, consistent with our novel genomic sequencing findings. The combined Southern blot and genomic sequencing data indicate that some of the cancer-linked alterations in CpG methylation are occurring with considerable sequence specificity. NBL2 is an attractive candidate for an epigenetic cancer marker and for elucidating the nature of epigenetic changes in cancer.  相似文献   

9.
Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the cell without initiating chromosomal instability.  相似文献   

10.
Plants regenerated from tissue culture and their progenies are expected to be identical clones, but often display heritable molecular and phenotypic variation. We characterized DNA methylation patterns in callus, primary regenerants, and regenerant-derived progenies of maize using immunoprecipitation of methylated DNA (meDIP) to assess the genome-wide frequency, pattern, and heritability of DNA methylation changes. Although genome-wide DNA methylation levels remained similar following tissue culture, numerous regions exhibited altered DNA methylation levels. Hypomethylation events were observed more frequently than hypermethylation following tissue culture. Many of the hypomethylation events occur at the same genomic sites across independent regenerants and cell lines. The DNA methylation changes were often heritable in progenies produced from self-pollination of primary regenerants. Methylation changes were enriched in regions upstream of genes and loss of DNA methylation at promoters was associated with altered expression at a subset of loci. Differentially methylated regions (DMRs) found in tissue culture regenerants overlap with the position of naturally occurring DMRs more often than expected by chance with 8% of tissue culture hypomethylated DMRs overlapping with DMRs identified by profiling natural variation, consistent with the hypotheses that genomic stresses similar to those causing somaclonal variation may also occur in nature, and that certain loci are particularly susceptible to epigenetic change in response to these stresses. The consistency of methylation changes across regenerants from independent cultures suggests a mechanistic response to the culture environment as opposed to an overall loss of fidelity in the maintenance of epigenetic states.  相似文献   

11.
Genomic instability is a highly pleiotropic phenotype, which may reflect a variety of underlying mechanisms. Destabilization has been shown in some cases to involve mutational alteration or inactivation of trans-acting cellular factors, for example, p53 or mismatch repair functions. However, aspects of instability are not well explained by mutational inactivation of trans-acting factors, and other epigenetic and cis-acting mechanisms have recently been proposed. The trans and cis models result in divergent predictions for the distribution of instability-associated genetic alterations within the genome, and for the inheritance of genomic instability among sibling sub-clones of unstable parents. These predictions have been tested in this study primarily by tracking the karyotypic distribution of chromosomal rearrangements in clones and sub-clones exhibiting radiation-induced genomic instability; inheritance of mutator phenotypes was also analyzed. The results indicate that genomic instability is unevenly transmitted to sibling sub-clones, that chromosomal rearrangements within unstable clones are non-randomly distributed throughout the karyotype, and that the majority of chromosomal rearrangements associated with instability affect trisomic chromosomal segments. Observations of instability in trisomic regions suggests that in addition to promoting further alterations in chromosomal number, aneuploidy can affect the recovery of structural rearrangements. In summary, these findings cannot be fully explained by invoking a homogeneously distributed factor acting in trans, but do provide support for previous suggestions that genomic instability may in part be driven by a cis-acting mechanism.  相似文献   

12.
Radiation is a well-known genotoxic agent and human carcinogen that gives rise to a variety of long-term effects. Its detrimental influence on cellular function is actively studied nowadays. One of the most analyzed, yet least understood long-term effects of ionizing radiation is transgenerational genomic instability. The inheritance of genomic instability suggests the possible involvement of epigenetic mechanisms, such as changes of the methylation of cytosine residues located within CpG dinucleotides. In the current study we evaluated the dose-dependence of the radiation-induced global genome DNA methylation changes. We also analyzed the effects of acute and chronic high dose (5Gy) exposure on DNA methylation in liver, spleen, and lung tissues of male and female mice and evaluated the possible persistence of the radiation-induced DNA methylation changes. Here we report that radiation-induced DNA methylation changes were sex- and tissue-specific, dose-dependent, and persistent. In parallel we have studied the levels of DNA damage in the exposed tissues. Based on the correlation between the levels of DNA methylation and DNA damage we propose that radiation-induced global genome DNA hypomethylation is DNA repair-related.  相似文献   

13.
The suitability of yeast artificial chromosome vectors (YACs) for cloning human Y chromosome tandemly repeated DNA sequences has been investigated. Clones containing DYZ3 or DYZ5 sequences were found in libraries at about the frequency anticipated on the basis of their abundance in the genome, but clones containing DYZ1 sequences were under-represented and the three clones examined contained junctions between DYZ1 and DYZ2. One DYZ3 clone was quite stable and had a long-range structure corresponding to genomic DNA. All other clones had long-range structures which either did not correspond to genomic DNA, or were too unstable to allow a simple comparison. The effects of the transformation process and host genotype on YAC structural stability were investigated. Gross structural rearrangements were often associated with re-transformation of yeast by a YAC. rad1-deficient yeast strains showed levels of instability similar to wild-type for all YAC clones tested. In rad52-deficient strains, DYZ5 containing YACs were as unstable as in the wild-type host, but DYZ1/DYZ2 or DYZ3 containing YACs were more stable. Thus the use of rad52 hosts for future library construction is recommended, but some sequences will still be unstable.  相似文献   

14.
Allopolyploidy, the joining of two parental genomes in a polyploid organism with diploid meiosis, is an important mechanism of reticulate evolution. While many successful long-established allopolyploids are known, those formed recently undergo an instability phase whose basis is now being characterized. We describe observations made with the Arabidopsis system that include phenotypic instability, gene silencing and activation, and methylation changes. We present a model based on the epigenetic destabilization of genomic repeats, which in the parents are heterochromatinized and suppressed. We hypothesize that loss of epigenetic suppression of these sequences, here defined as the heterome, results in genomic instability including silencing of single-copy genes.  相似文献   

15.
Previous studies have shown rapid and extensive genomic instability associated with early stages of allopolyploidization in wheat.However, these studies are based on either a few pre-selected genomic loci or genome-wide analysis of a single plant individual for a given cross combination, thus making the extent and generality of the changes uncertain.To further study the generality and characteristics of allopolyploidization-induced genomic instability in wheat, we investigated genetic and epigenetic changes from a genome-wide perspective (by using the AFLP and MSAP markers) in four sets of newly synthesized allotetraploid wheat lines with various genome constitutions, each containing three randomly chosen individual plants at the same generation.We document that although general chromosomal stability was characteristic of all four sets of allotetraploid wheat lines, genetic and epigenetic changes at the molecular level occurred in all these plants, with both kinds of changes classifiable into two distinct categories, i.e., stochastic and directed.The abundant type of genetic change is loss of parental bands while the prevalent cytosine methylation pattern alteration is hypermethylation at the CHG sites.Our results have extended previous studies regarding allopolyploidization-induced genomic dynamics in wheat by demonstrating the generality of both genetic and epigenetic changes associated with multiple nascent allotetraploid wheat lines, and providing novel insights into the characteristics of the two kinds of induced genomic instabilities.  相似文献   

16.
The investigation of the cancer-associated structural and epigenetic changes in cell genome is a major approach for understanding mechanisms of cancerogenesis. To investigate these genome changes, novel technique of microarrays comprising NotI-linking genome clones was developed. Twenty eight samples from patients with cervical cancer were analyzed using NotI microarrays of human chromosome 3. Deletions, amplifications and methylation were detected for 109 out of 182 NotI clones with different frequency. Notably, 17 NotI-linking clones showed genomic changes in more than 35% of tumor samples investigated, which suggests involvement of genes associated with these clones in development of cervical cancer.  相似文献   

17.
Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks.  相似文献   

18.
ABSTRACT: BACKGROUND: Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. RESULTS: To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. CONCLUSIONS: Our results demonstrate that etoposide imposes a similar genotoxic stress on plant cells as it does on animal and human cells, which may induce transgenerational genomic instability by instigating transpositional activation of otherwise dormant TEs. In addition, we show for the first time that etoposide may induce epigenetic instability in the form of altered DNA methylation patterns in eukaryotes. However, penetration of the genotoxic effects of etoposide on plant cells, as being reflected as genetic and epigenetic instability, appears to be in a strictly genotype- and/or generation-dependent manner.  相似文献   

19.
An understanding of cellular processes that determine the response to ionizing radiation (IR) exposure is essential to improve radiotherapy and to assess risks to human health after accidental radiation exposure. Exposure to IR induces a multitude of biological effects. Recent studies have indicated the involvement of epigenetic events in regulating the responses of irradiated cells. DNA methylation, where the cytosine bases in CpG dimers are converted to 5-methyl cytosine, is an epigenetic event that has been shown to regulate a variety of biological processes. We investigated the DNA methylation changes in irradiated TK6 and WTK1 human cells that differ in sensitivity to IR. The global DNA methylation alterations as measured by an enzyme-linked immunosorbent assay-based assay showed hypomethylation in both type of cells. Using an arbitrarily primed polymerase chain reaction (AP-PCR) approach, we observed time-dependent dynamic changes in the regional genomic DNA methylation patterns in both cell lines. The AP-PCR DNA methylation profiles were different between TK6 and WTK1 cells, indicating the involvement of differential genomic DNA responses to radiation treatment. The analysis of the components of the DNA methylation machinery showed the modulation of maintenance and de novo methyltransferases in irradiated cells. DNMT1 mRNA levels were increased in TK6 cells after irradiation but were repressed in WTK1 cells. DNMT3A and DNMT3B were induced in both cells after radiation treatment. TET1, involved in the conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), was induced in both cells. This study demonstrates that irradiated cells acquire epigenetic changes in the DNA methylation patterns, and the associated cellular machinery are involved in the response to radiation exposure. This study also shows that DNA methylation patterns change at different genomic regions and are dependent on time after irradiation and the genetic background of the cell.  相似文献   

20.
Kang YK  Park JS  Koo DB  Choi YH  Kim SU  Lee KK  Han YM 《The EMBO journal》2002,21(5):1092-1100
Cloning by nuclear transfer (NT) has been riddled with difficulties: most clones die before birth and survivors frequently display growth abnormalities. The cross-species similarity in abnormalities observed in cloned fetuses/animals leads us to suspect the fidelity of epigenetic reprogramming of the donor genome. Here, we found that single-copy sequences, unlike satellite sequences, are demethylated in pre-implantation NT embryos. The differential demethylation pattern between genomic sequences was confirmed by analyzing single blastocysts. It suggests selective demethylation of other developmentally important genes in NT embryos. We also observed a reverse relationship between methylation levels and inner cell mass versus trophectoderm (ICM/TE) ratios, which was found to be a result of another type of differential demethylation occurring in NT blastocysts where unequal methylation was maintained between ICM and TE regions. TE-localized methylation aberrancy suggests a widespread gene dysregulation in an extra-embryonic region, thereby resulting in placental dysfunction familiar to cloned fetuses/animals. These differential demethylations among genomic sequences and between differently allocated cells produce varied overall, but specified, methylation patterns, demonstrating that epigenetic reprogramming occurs in a limited fashion in NT embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号