首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Huang X  Guo Y  Bao C  Shen N 《PloS one》2011,6(7):e21671

Introduction

Dysregulated cytokine action on immune cells plays an important role in the initiation and progress of systemic lupus erythematosus (SLE), a complex autoimmune disease. Comprehensively quantifying basal STATs phosphorylation and their signaling response to cytokines should help us to better understand the etiology of SLE.

Methods

Phospho-specific flow cytometry was used to measure the basal STAT signaling activation in three immune cell types of peripheral-blood mononuclear cells from 20 lupus patients, 9 rheumatoid arthritis (RA) patients and 13 healthy donors (HDs). A panel of 27 cytokines, including inflammatory cytokines, was measured with Bio-Plex™ Human Cytokine Assays. Serum Prolactin levels were measured with an immunoradiometric assay. STAT signaling responses to inflammatory cytokines (interferon α [IFNα], IFNγ, interleukin 2 [IL2], IL6, and IL10) were also monitored.

Results

We observed the basal activation of STAT3 in SLE T cells and monocytes, and the basal activation of STAT5 in SLE T cells and B cells. The SLE samples clustered into two main groups, which were associated with the SLE Disease Activity Index 2000, their erythrocyte sedimentation rate, and their hydroxychloroquine use. The phosphorylation of STAT5 in B cells was associated with cytokines IL2, granulocyte colony-stimulating factor (G-CSF), and IFNγ, whereas serum prolactin affected STAT5 activation in T cells. The responses of STAT1, STAT3, and STAT5 to IFNα were greatly reduced in SLE T cells, B cells, and monocytes, except for the STAT1 response to IFNα in monocytes. The response of STAT3 to IL6 was reduced in SLE T cells.

Conclusions

The basal activation of STATs signaling and reduced response to cytokines may be helpful us to identify the activity and severity of SLE.  相似文献   

3.
4.
STATs are believed to play key roles in normal and abnormal cell function. In the present work, we investigated the role of STATs in an IL-2-responsive human lymphoblastic lymphoma-derived cell line, YT. Only STAT3 was found constitutively tyrosine phosphorylated, but not other STATs. Hyperactive STAT3 was not attributable to a pre-existing intermediate affinity IL-2R complex and/or hyperactive Jak activity. Depletion of STAT3 protein expression reduced tumor cell viability with protracted kinetics (72-96 h), while TUNEL assays demonstrated cell death occurred via apoptosis. Interestingly, depletion of STAT5 in this same tumor induced more pronounced cell death compared with STAT3 depletion (24 h). Although IL-2 was able to rescue STAT3-depleted cells from death, it could not compensate for the loss of STAT5. To determine the prosurvival function of STAT3 vs STAT5 within the same tumor model, genes were profiled in STAT3- or STAT5-depleted YT cells by apoptosis-specific microarrays. Several differentially expressed genes were identified. Interestingly, those genes involved in NF-kappaB regulation, such as TNFR-associated factors 2 and 5 and B cell leukemia/lymphoma 10, were readily decreased upon STAT5, but not STAT3, depletion as validated by quantitative RT-PCR. These results suggest that STAT5 and, to a lesser extent, hyperactive STAT3 provide preferential and critical cell survival signals for certain human lymphoid tumors, indicating that nonhyperactive STATs should be considered as therapeutic targets for abrogating tumorigenesis.  相似文献   

5.
6.
7.
8.
Through a comprehensive review and in silico analysis of reported data on STAT‐linked diseases, we analysed the communication pathways and interactome of the seven STATs in major cancer categories and proposed rational targeting approaches for therapeutic intervention to disrupt critical pathways and addictions to hyperactive JAK/STAT in neoplastic states. Although all STATs follow a similar molecular activation pathway, STAT1, STAT2, STAT4 and STAT6 exert specific biological profiles associated with a more restricted pattern of activation by cytokines. STAT3 and STAT5A as well as STAT5B have pleiotropic roles in the body and can act as critical oncogenes that promote many processes involved in cancer development. STAT1, STAT3 and STAT5 also possess tumour suppressive action in certain mutational and cancer type context. Here, we demonstrated member‐specific STAT activity in major cancer types. Through systems biology approaches, we found surprising roles for EGFR family members, sex steroid hormone receptor ESR1 interplay with oncogenic STAT function and proposed new drug targeting approaches of oncogenic STAT pathway addiction.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
STATs play key roles in immune function. We examined the role of STAT5a/b in allograft rejection. STAT5a/b-deficient mice showed a 4-fold increased survival time of heart allografts (p < 0.01). Unlike wild type, purified STAT5a/b-/- T cells transferred to Rag1-/- recipients failed to mediate heart allograft rejection until supplemented with STAT5a/b-/- B cells. In vitro, STAT5a/b-/- T cells did not proliferate in response to Con A or alloantigens but entered apoptosis within 48 h (95%). Activated STAT5a/b-/- T cells showed increased expression of proapoptotic (caspases, DNA repair genes, TNF/TNFR-associated factor family genes) and decreased antiapoptotic mRNAs in microarrays, while Western blots confirmed reduced antiapoptotic Bcl-2 and elevated proapoptotic Bax protein expression. Interestingly, at 24 h postactivation, STAT5a/b+/+ and STAT5a/b-/- T cells produced similar levels of IL-2, IL-4, IL-10, and IFN-gamma mRNA; ELISPOT assay showed an equivalent number of IL-4- and IFN-gamma-producing T cells in both STAT5a/b+/+ and STAT5a/b-/- splenic populations. Sera from STAT5a/b+/+ and STAT5a/b-/- rejectors had donor-specific IgM, IgG1, IgG2a, and IgG2b Ab, while STAT5a/b deficiency had no impact on B cell survival or proliferation in response to LPS. Compared with allografts from STAT5a/b+/+ recipients, heart allografts from STAT5a/b-/- recipients had markedly reduced infiltration by CD4 and CD8 T cells but increased infiltration by B cells and dense endothelial deposition of C4d, a marker of humoral rejection. Thus, activated STAT5a/b-/- T cells produce cytokines prior to entering apoptosis, thereby promoting differentiation of B cells yielding donor-specific IgM and IgG Ab that mediate allograft rejection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号