首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human mitochondrial DNA (mtDNA) is a nonrecombining genome that codes for 13 subunits of the mitochondrial oxidative phosphorylation system, 2 rRNAs, and 22 tRNAs. Mutations have accumulated sequentially in mtDNA lineages that diverged tens of thousands of years ago. The genes in mtDNA are subject to different functional constraints and are therefore expected to evolve at different rates, but the rank order of these rates should be the same in all lineages of a phylogeny. Previous studies have indicated, however, that specific regions of mtDNA may have experienced different histories of selection in different lineages, possibly because of lineage-specific interactions or environmental factors such as climate. We report here on a survey for lineage-specific patterns of nucleotide polymorphism in human mtDNA. We calculated molecular polymorphism indices and neutrality tests for classes of functional sites and genes in 837 human mtDNA sequences, compared the results between continent-specific mtDNA lineages, and used two sliding window methods to identify differences in the patterns of polymorphism between haplogroups. A general correlation between nucleotide position and the level of nucleotide polymorphism was identified in the coding region of the mitochondrial genome. Nucleotide diversity in the protein-coding sequence of mtDNA was generally not much higher than that found for many genes in nuclear DNA. A comparison of nonsynonymous/synonymous rate ratios in the 13 protein-coding genes suggested differences in the relative levels of selection between haplogroups, including the European haplogroup clusters. Interestingly, a segment of the MTND5 gene was found to be almost void of segregating sites and nonsynonymous mutations in haplogroup J, which has been associated with susceptibility to certain complex diseases. Our results suggest that there are haplogroup-specific differences in the intensity of selection against particular regions of the mitochondrial genome, indicating that some mutations may be non-neutral within specific phylogenetic lineages but neutral within others.  相似文献   

2.
《Genomics》2019,111(4):799-807
Mitochondrial DNA (mtDNA) is an extrachromosomal genome which can provide important information for evolution and phylogenetic analysis. In this study, we assembled a complete mitogenome of a crab Parasesarma pictum (Brachyura: Grapsoidea: Sesarmidae) from next generation sequencing reads at the first time. P. pictum is a mudflat crab, belonging to the Sesarmidae family (subfamily Sesarminae), which is perched on East Asia. The 15,716 bp mitogenome covers 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and one control region (CR). The control region spanns 420 bp. The genome composition was highly A+T biased 75.60% and showed negative AT-skew (−0.03) and negative GC-skew (−0.47). Compared with the ancestor of Brachyura, the gene order of Sesarmidae has several differences and the gene order of P. pictum is typical for mitogenomes of Sesarmidae. Phylogenetic tree based on nucleotide sequences of mitochondrial 13 PCGs using BI and ML determined that P. pictum has a sister group relationship with Parasesarma tripectinis and belongs to Sesarmidae.  相似文献   

3.
Nucleotide sequences of the genome RNA encoding capsid protein VP1 (918 nucleotides) of 18 enterovirus 70 (EV70) isolates collected from various parts of the world in 1971 to 1981 were determined, and nucleotide substitutions among them were studied. The genetic distances between isolates were calculated by the pairwise comparison of nucleotide difference. Regression analysis of the genetic distances against time of isolation of the strains showed that the synonymous substitution rate was very high at 21.53 x 10(-3) substitution per nucleotide per year, while the nonsynonymous rate was extremely low at 0.32 x 10(-3) substitution per nucleotide per year. The rate estimated by the average value of synonymous and nonsynonymous substitutions (W.-H. Li, C.-C. Wu, and C.-C. Luo, Mol. Biol. Evol. 2:150-174, 1985) was 5.00 x 10(-3) substitution per nucleotide per year. Taking the average value of synonymous and nonsynonymous substitutions as genetic distances between isolates, the phylogenetic tree was inferred by the unweighted pairwise grouping method of arithmetic average and by the neighbor-joining method. The tree indicated that the virus had evolved from one focal place, and the time of emergence was estimated to be August 1967 +/- 15 months, 2 years before first recognition of the pandemic of acute hemorrhagic conjunctivitis. By superimposing every nucleotide substitution on the branches of the phylogenetic tree, we analyzed nucleotide substitution patterns of EV70 genome RNA. In synonymous substitutions, the proportion of transitions, i.e., C<==>U and G<==>A, was found to be extremely frequent in comparison with that reported on other viruses or pseudogenes. In addition, parallel substitutions (independent substitutions at the same nucleotide position on different branches, i.e., different isolates, of the tree) were frequently found in both synonymous and nonsynonymous substitutions. These frequent parallel substitutions and the low nonsynonymous substitution rate despite the very high synonymous substitution rate described above imply a strong restriction on nonsynonymous substitution sites of VP1, probably due to the requirement for maintaining the rigid icosahedral conformation of the virus.  相似文献   

4.
The high‐altitude environment may drive vertebrate evolution in a certain way, and vertebrates living in different altitude environments might have different energy requirements. We hypothesized that the high‐altitude environment might impose different influences on vertebrate mitochondrial genomes (mtDNA). We used selection pressure analyses and PIC (phylogenetic independent contrasts) analysis to detect the evolutionary rate of vertebrate mtDNA protein‐coding genes (PCGs) from different altitudes. The results showed that the ratio of nonsynonymous/synonymous substitutions (dN/dS) in the mtDNA PCGs was significantly higher in high‐altitude vertebrates than in low‐altitude vertebrates. The seven rapidly evolving genes were shared by the high‐altitude vertebrates, and only one positive selection gene (ND5 gene) was detected in the high‐altitude vertebrates. Our results suggest the mtDNA evolutionary rate in high‐altitude vertebrates was higher than in low‐altitude vertebrates as their evolution requires more energy in a high‐altitude environment. Our study demonstrates the high‐altitude environment (low atmospheric O2 levels) drives vertebrate evolution in mtDNA PCGs.  相似文献   

5.
H Quesada  M Warren  D O Skibinski 《Genetics》1998,149(3):1511-1526
Mussels have two types of mitochondrial DNA (mtDNA). The M type is transmitted paternally, and the F type is transmitted maternally. To test hypotheses of the molecular evolution of both mtDNA genomes, 50 nucleotide sequences were obtained for 396 bp of the COIII gene of European populations of Mytilus edulis and the Atlantic and Mediterranean forms of M. galloprovincialis. Analysis based on the proportion of synonymous and nonsynonymous substitutions indicate that mtDNA is evolving in a non-neutral and complex fashion. Previous studies on American mussels demonstrated that the F genome experiences a higher purifying selection and that the M genome evolves faster. Here we show that these patterns also hold in European populations. However, in contrast to American populations, where an excess of replacement substitution between F and M lineages has been reported, a significant excess of replacement polymorphism within mtDNA lineages is observed in European populations of M. galloprovincialis. European populations also show an excess of replacement polymorphism within the F but not within the M genome with respect to American M. trossulus, as well as a consistent pattern of excess of rare variants in both F and M genomes. These results are consistent with a nearly neutral model of molecular evolution and a recent relaxation of selective constraints on European mtDNA. Levels of diversity are significantly higher for the M than F genome, and the M genome also accumulates synonymous and nonsynonymous substitutions at a higher rate, in contrast with earlier reports where no difference for the synonymous rate was observed. It is suggested that a subtle balance between relaxed selection and a higher mutation rate explains the faster evolutionary rate of the M lineage.  相似文献   

6.
Adaptive evolution of G-protein coupled receptor genes   总被引:2,自引:0,他引:2  
The phylogeny and patterns of nucleotide substitutions in the visual pigment genes, adrenergic receptor genes, muscarinic receptor genes, and in the human mas oncogene were studied by comparing their DNA sequences. The evolutionary tree obtained shows that the visual pigment genes and mas oncogene form one cluster and that the receptor genes form another. In the evolution of rhodopsin genes, synonymous substitutions outnumber nonsynonymous substitutions. This is consistent with the neutral theory of molecular evolution. However, the early evolutionary stages of alpha- and beta-adrenergic and muscarinic receptors are notable for significantly more nonsynonymous substitutions than synonymous substitutions, suggesting the acquisition of novel functional adaptations. Variable rates of nonsynonymous changes in different domains of these proteins reveal DNA segments that might have been important in their functional adaptations.   相似文献   

7.
李雪娟  黄原  雷富民 《遗传》2014,36(9):912-920
海南山鹧鸪(Arborophila ardens)对生境选择比较严格,种群数量稀少,属于濒危物种。为进一步研究山鹧鸪属的进化和系统发育关系,文章利用Illumina Hiseq2000高通量测序技术获得了海南山鹧鸪线粒体全基因组序列,从比较基因组学角度分析了4种山鹧鸪鸟类的线粒体基因组特征,并探讨了山鹧鸪属鸟类的系统发育地位。研究结果表明:(1) 海南山鹧鸪线粒体基因组长度为16 730 bp,编码13个蛋白质编码基因、2个核糖体RNA基因、22个转运RNA基因以及1个控制区;(2) 山鹧鸪属物种受到了纯化选择的作用,且在进化过程中积累了更多的非同义替换;(3) 山鹧鸪属位于雉科鸟类系统树的基部位置,其中白眉山鹧鸪与红喉山鹧鸪互为姐妹群,海南山鹧鸪位于山鹧鸪属的基部位置,与其他3种山鹧鸪鸟类的亲缘关系较远。  相似文献   

8.
Summary Focusing on the synonymous substitution rate, we carried out detailed sequence analyses of hominoid mitochondrial (mt) DNAs of ca. 5-kb length. Owing to the outnumbered transitions and strong biases in the base compositions, synonymous substitutions in mtDNA reach rapidly a rather low saturation level. The extent of the compositional biases differs from gene to gene. Such changes in base compositions, even if small, can bring about considerable variation in observed synonymous differences and may result in the region-dependent estimate of the synonymous substitution rate. We demonstrate that such a region dependency is due to a failure to take proper account of heterogeneous compositional biases from gene to gene but that the actual synonymous substitution rate is rather uniform. The synonymous substitution rate thus estimated is 2.37 ± 0.11 × 10–8 per site per year and comparable to the overall rate for the noncoding region. On the other hand, the rate of nonsynonymous substitutions differs considerably from gene to gene, as expected under the neutral theory of molecular evolution. The lowest rate is 0.8 × 10–9 per site per year forCOI and the highest rate is 4.5 × 10–9 forATPase 8, the degree of functional constraints (measured by the ratio of the nonsynonymous to the synonymous substitution rate) being 0.03 and 0.19, respectively. Transfer RNA (tRNA) genes also show variability in the base contents and thus in the nucleotide differences. The average rate for 11 tRNAs contained in the 5-kb region is 3.9 × 10–9 per site per year. The nucleotide substitutions in the genome suggest that the transition rate is about 17 times faster than the transversion rate.  相似文献   

9.
Hepatitis C virus (HCV) populations persist in vivo as a mixture of heterogeneous viruses called quasispecies. The relationship between the genetic heterogeneity of these variants and their responses to antiviral treatment remains to be elucidated. We have studied 26 virus strains to determine the influence of hypervariable region 1 (HVR-1) of the HCV genome on the effectiveness of alpha interferon (IFN-alpha) therapy. Following PCR amplification, we cloned and sequenced HVR-1. Pretreatment serum samples from 13 individuals with chronic hepatitis C whose virus was subsequently eradicated by treatment were compared with samples from 13 nonresponders matched according to the major factors known to influence the response, i.e., sex, genotype, and pretreatment serum HCV RNA concentration. The degree of virus variation was assessed by analyzing 20 clones per sample and by calculating nucleotide sequence entropy (complexity) and genetic distances (diversity). Types of mutational changes were also determined by calculating nonsynonymous substitutions per nonsynonymous site (K(a)) and synonymous substitutions per synonymous site (K(s)). The paired-comparison analysis of the nucleotide sequence entropy and genetic distance showed no statistical differences between responders and nonresponders. By contrast, nonsynonymous substitutions were more frequent than synonymous substitutions (P 相似文献   

10.
Wild brook charr populations (Salvelinus fontinalis) completely introgressed with the mitochondrial genome (mtDNA) of arctic charr (Salvelinus alpinus) are found in several lakes of northeastern Québec, Canada. Mitochondrial respiratory enzymes of these populations are thus encoded by their own nuclear DNA and by arctic charr mtDNA. In the present study we performed a comparative sequence analysis of the whole mitochondrial genome of both brook and arctic charr to identify the distribution of mutational differences across these two genomes. This analysis revealed 47 amino acid replacements, 45 of which were confined to subunits of the NADH dehydrogenase complex (Complex I), one in the cox3 gene (Complex IV), and one in the atp8 gene (Complex V). A cladistic approach performed with brook charr, arctic charr, and two other salmonid fishes (rainbow trout [Oncorhynchus mykiss] and Atlantic salmon [Salmo salar]) revealed that only five amino acid replacements were specific to the charr comparison and not shared with the other two salmonids. In addition, five amino acid substitutions localized in the nad2 and nad5 genes denoted negative scores according to the functional properties of amino acids and, therefore, could possibly have an impact on the structure and functional properties of these mitochondrial peptides. The comparison of both brook and arctic charr mtDNA with that of rainbow trout also revealed a relatively constant mutation rate for each specific gene among species, whereas the rate was quite different among genes. This pattern held for both synonymous and nonsynonymous nucleotide positions. These results, therefore, support the hypothesis of selective constraints acting on synonymous codon usage.  相似文献   

11.
Nucleotide Substitution Rate of Mammalian Mitochondrial Genomes   总被引:22,自引:0,他引:22  
We present here for the first time a comprehensive study based on the analysis of closely related organisms to provide an accurate determination of the nucleotide substitution rate in mammalian mitochondrial genomes. This study examines the evolutionary pattern of the different functional mtDNA regions as accurately as possible on the grounds of available data, revealing some important ``genomic laws.' The main conclusions can be summarized as follows. (1) High intragenomic variability in the evolutionary dynamic of mtDNA was found. The substitution rate is strongly dependent on the region considered, and slow- and fast-evolving regions can be identified. Nonsynonymous sites, the D-loop central domain, and tRNA and rRNA genes evolve much more slowly than synonymous sites and the two peripheral D-loop region domains. The synonymous rate is fairly uniform over the genome, whereas the rate of nonsynonymous sites depends on functional constraints and therefore differs considerably between genes. (2) The commonly accepted statement that mtDNA evolves more rapidly than nuclear DNA is valid only for some regions, thus it should be referred to specific mitochondrial components. In particular, nonsynonymous sites show comparable rates in mitochondrial and nuclear genes; synonymous sites and small rRNA evolve about 20 times more rapidly and tRNAs about 100 times more rapidly in mitochondria than in their nuclear counterpart. (3) A species-specific evolution is particularly evident in the D-loop region. As the divergence times of the organism pairs under consideration are known with sufficient accuracy, absolute nucleotide substitution rates are also provided. Received: 11 May 1998 / Accepted: 2 September 1998  相似文献   

12.
The current study compares the nucleotide variation among 22 complete mitochondrial genomes of the three distinct Drosophila simulans haplotypes with intron 1 of the alcohol dehydrogenase-related locus. This is the first study to investigate the sequence variation of multiple complete mitochondrial genomes within distinct mitochondrial haplotypes of a single species. Patterns of variation suggest distinct forces are influencing the evolution of mitochondrial DNA (mtDNA) and autosomal DNA in D. simulans. First, there is little variation within each mtDNA haplotype but strong differentiation among them. In contrast, there is no support for differentiation of the mitochondrial haplotypes at the autosomal locus. Second, there is a significant deficiency of mitochondrial variation in each haplotype relative to the autosomal locus. Third, the ratio of nonsynonymous to synonymous substitutions is not equal in all branches of the well-resolved phylogeny. There is an excess of nonsynonymous substitutions relative to synonymous substitutions within each D. simulans haplotype. This result is similar to that previously observed within the mtDNA of distinct species. A single evolutionary force may be causally linked to the observed patterns of mtDNA variation—a rickettsia-like microorganism, Wolbachia pipientis, which is known to directly influence mitochondrial evolution but have a less direct influence on autosomal loci. Received: 16 September 1999 / Accepted: 14 March 2000  相似文献   

13.
The red-necked phalarope is a wonderful species with specific morphological characters and lifestyles. Mitochondrial genomes, encoding necessary proteins involved in the system of energy metabolism, are important for the evolution and adaption of species. In this study, we determined the complete mitogenome sequence of Phalaropus lobatus (Charadriiformes: Scolopacidae). The circular genome is 16714 bp in size, containing 13 PCGs, two ribosomal RNAs and 22 tRNAs and a high AT-rich control region. The AT skew and GC skew of major strand is positive and negative respectively. Most of PCGs are biased towards A-rich except ND1. A codon usage analysis shows that 3 start codons (ATG, GTG and ATA), 4 stop codons (TAA, TAG, AGG, AGA) and two incomplete terminate codons (T–). Twenty two transfer RNAs have the typical cloverleaf structure, and a total of ten base pairs are mismatched throughout the nine tRNA genes. The phylogenetic tree based on 13 PCGs and 2 rRNA genes indicates that monophyly of the family and genus Phalaropus is close to genus Xenus plus Tringa. The analysis of selective pressure shows 13 protein-coding genes are evolving under the purifying selection and P. lobatus is different from other Scolopacidae species on the selective pressure of gene ND4. This study helps us know the inherent mechanism of mitochondrial structure and natural selection.  相似文献   

14.
Mitochondrial genome is a powerful molecule marker to provide information for phylogenetic relationships and revealing molecular evolution in ichthyological studies. Sebastiscus species, a marine rockfish, are of essential economic value. However, the taxonomic status and phylogenetic relationships of Sebastidae have been controversial so far. Here, the mitochondrial genomes (mitogenomes) of three species, S. tertius, S. albofasciatus, and S. marmoratus, were systemically investigated. The lengths of the mitogenomes’ sequences of S. tertius, S. albofasciatus, and S. marmoratus were 16910, 17056, and 17580 bp, respectively. It contained 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNA (tRNA) genes, and one identical control region (D-loop) among the three species. The genetic distance and Ka/Ks ratio analyses indicated 13 PCGs were suffering purifying selection and the selection pressures were different from certain deep-sea fishes, which were most likely due to the difference in their living environment. The phylogenetic tree was constructed by Bayesian Inference (BI) and Maximum Likelihood (ML). Most interestingly, the results indicated that Sebastidae and Scorpaenidae were grouped into a separate branch, so the taxonomic status of Sebastidae should be classified into subfamily Sebastinae. Our results may lead to a taxonomic revision of Scorpaenoidei.  相似文献   

15.
A novel mitochondrial DNA-like sequence in the human nuclear genome.   总被引:3,自引:0,他引:3  
We describe here a nuclear mitochondrial DNA-like sequence (numtDNA) that is nearly identical in sequence to a continuous 5842 bp segment of human mitochondrial DNA (mtDNA) that spans nucleotide positions 3914 to 9755. On the basis of evolutionary divergence among modern primates, this numtDNA molecule appears to represent mtDNA from a hominid ancestor that has been translocated to the nuclear genome during the recent evolution of humans. This numtDNA sequence harbors synonymous and nonsynonymous nucleotide substitutions relative to the authentic human mtDNA sequence, including an array of substitutions that was previously found in the cytochrome c oxidase subunit 1 and 2 genes. These substitutions were previously reported to occur in human mtDNA, but subsequently contended to be present in a nuclear pseudogene sequence. We now demonstrate their exclusive association with this 5842-bp numtDNA, which we have characterized in its entirety. This numtDNA does not appear to be expressed as a mtDNA-encoded mRNA. It is present in nuclear DNA from human blood donors, in human SH-SY5Y and A431 cell lines, and in rho(0) SH-SY5Y and rho(0) A431 cell lines that were depleted of mtDNA. The existence of human numtDNA sequences with great similarities to human mtDNA renders the amplification of pure mtDNA from cellular DNA very difficult, thereby creating the potential for confounding studies of mitochondrial diseases and population genetics.  相似文献   

16.
《Genomics》2020,112(5):3056-3064
Here, the complete mitochondrial genome (mitogenome) of Drawida gisti was sequenced and compared with the mitogenomes of other Metagynophora species. The circular mitogenome was 14,648 bp in length and contained two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and 22 transfer RNA genes (tRNAs). The types of constitutive genes and the direction of the coding strand that appeared in Drawida mitogenome were identical to those observed in other Metagynophora species, except for a missing lengthy non-coding region. The conservative relationships between Drawida species were supported by the overall analyses of 13 PCGs, two rRNAs, and 22 tRNAs. A comparison of the Metagynophora mitogenomes revealed that the ATP8 gene possessed the highest polymorphism among the 13 PCGs and two rRNAs. Phylogenetic analysis suggested that the Moniligastridae contained Drawida, which is a primitive Metagynophora group. Our study provides a step forward toward elucidating the evolutionary linkages within Drawida and even Metagynophora.  相似文献   

17.
Mouse lactate dehydrogenase-B cDNAs were isolated from cDNA libraries of macrophage (ICR strain) and thymus (F1 hybrid of C57BL/6 and CBA strains), and their nucleotide sequences determined. The lactate dehydrogenase-B cDNA insert of thymus clone mB188 consists of the protein-coding sequence (1002 nucleotides), the 5' (46 nucleotides) and 3' (190 nucleotides) non-coding regions, and poly(A) tail (19 nucleotides), while macrophage clone mB168 contains a partial lactate dehydrogenase cDNA insert from codon no. 55 to the poly(A) tail. Seven silent nucleotide substitutions at codon no. 142, 143, 186, 187, 241, 285 and 292, as well as a single nucleotide change in the 3' non-coding region, were found between these different strains of mice. The predicted sequence of 333 amino acids, excluding initiation methionine, was confirmed by sequencing and/or compositional analyses of a total of 103 (31%) amino acids from tryptic peptides of mouse lactate dehydrogenase-B protein. The nucleotide sequence of the mouse coding region for lactate dehydrogenase B shows 86% identity with that of the human isoenzyme, and only eight of the 139 nucleotide differences resulted in amino acid substitutions at residues 10, 13, 14, 17, 52, 132, 236 and 317. The rates of nucleotide substitutions at synonymous and nonsynonymous sites in the mammalian lactate dehydrogenase genes are calculated. The rates of synonymous substitutions for lactate dehydrogenase genes A (muscle) and B (heart) are considerably higher than the average rate computed from human and rodent genes. The rates of nonsynonymous substitutions for lactate dehydrogenase genes A (muscle) and B (heart), particularly the latter, are highly conservative. The rates of synonymous and nonsynonymous substitutions for the lactate dehydrogenase-C gene are about the same as the average rates for mammalian genes. A phylogenetic tree of vertebrate lactate dehydrogenase protein sequences is constructed. In agreement with the previous results, this analysis further indicates that lactate dehydrogenase-C gene branched off earlier than did lactate dehydrogenase-A and lactate dehydrogenase-B genes.  相似文献   

18.
When a population size is reduced, genetic drift may fix slightly deleterious mutations, and an increase in nonsynonymous substitution is expected. It has been suggested that past aridity has seriously affected and decreased the populations of cichlid fishes in Lake Victoria, while geographical studies have shown that the water levels in Lake Tanganyika and Lake Malawi have remained fairly constant. The comparably stable environments in the latter two lakes might have kept the populations of cichlid fishes large enough to remove slightly deleterious mutations. The difference in the stability of cichlid fish population sizes between Lake Victoria and the Lakes Tanganyika and Malawi is expected to have caused differences in the nonsynonymous/synonymous ratio, ω (= dN/dS), of the evolutionary rate. Here, we estimated ω and compared it between the cichlids of the three lakes for 13 mitochondrial protein-coding genes using maximum likelihood methods. We found that the lineages of the cichlids in Lake Victoria had a significantly higher ω for several mitochondrial loci. Moreover, positive selection was indicated for several codons in the mtDNA of the Lake Victoria cichlid lineage. Our results indicate that both adaptive and slightly deleterious molecular evolution has taken place in the Lake Victoria cichlids' mtDNA genes, whose nonsynonymous sites are generally conserved.  相似文献   

19.
Summary The hemagglutinin (HA) genes of influenza type A (H1N1) viruses isolated from swine were cloned into plasmid vectors and their nucleotide sequences were determined. A phylogenetic tree for the HA genes of swine and human influenza viruses was constructed by the neighbor-joining method. It showed that the divergence between swine and human HA genes might have occurred around 1905. The estimated rates of synonymous (silent) substitutions for swine and human influenza viruses were almost the same. For both viruses, the rate of synonymous substitution was much higher than that of nonsynonymous (amino acid altering) substitution. It is the case even for only the antigenic sites of the HA. This feature is consistent with the neutral theory of molecular evolution. The rate of nonsynonymous substitution for human influenza viruses was three times the rate for swine influenza viruses. In particular, nonsynonymous substitutions at antigenic sites occurred less frequently in swine than in humans. The difference in the rate of nonsynonymous substitution between swine and human influenza viruses can be explained by the different degrees of functional constraint operating on the amino acid sequence of the HA in both hosts.  相似文献   

20.
Two simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions are presented. Although they give no weights to different types of codon substitutions, these methods give essentially the same results as those obtained by Miyata and Yasunaga's and by Li et al.'s methods. Computer simulation indicates that estimates of synonymous substitutions obtained by the two methods are quite accurate unless the number of nucleotide substitutions per site is very large. It is shown that all available methods tend to give an underestimate of the number of nonsynonymous substitutions when the number is large.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号