首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpine plant Arabis alpina is an emerging model in the ecological genomic field which is well suited to identifying the genes involved in local adaptation in contrasted environmental conditions, a subject which remains poorly understood at molecular level. This study presents the assembly of a pool of A. alpina genomic fragments using next‐generation sequencing technologies. These contigs cover 172 Mb of the A. alpina genome (i.e. 50% of the genome) and were shown to contain sequences giving positive hits against 96% of the 458 CEGMA core genes (Core Eukaryotic Genes Mapping Approach), a set of highly conserved eukaryotic genes. Regions presenting high nucleic sequence identity with 77% of the close relative Arabidopsis thaliana's genes were found with an unbiased distribution across the different functional categories of A. thaliana genes. This new resource was tested using a resequencing assay to identify polymorphic sites. Sixteen samples were successfully analysed and 127 041 single‐nucleotide polymorphisms identified. This contig data set will contribute to improving our understanding of the ecology of Arabis alpina, thus constituting an important resource for future ecological genomic studies.  相似文献   

2.
Understanding the genetic basis of adaptation in response to environmental variation is fundamental as adaptation plays a key role in the extension of ecological niches to marginal habitats and in ecological speciation. Based on the assumption that some genomic markers are correlated to environmental variables, we aimed to detect loci of ecological relevance in the alpine plant Arabis alpina L. sampled in two regions, the French (99 locations) and the Swiss (109 locations) Alps. We used an unusually large genome scan [825 amplified fragment length polymorphism loci (AFLPs)] and four environmental variables related to temperature, precipitation and topography. We detected linkage disequilibrium among only 3.5% of the considered AFLP loci. A population structure analysis identified no admixture in the study regions, and the French and Swiss Alps were differentiated and therefore could be considered as two independent regions. We applied generalized estimating equations (GEE) to detect ecologically relevant loci separately in the French and Swiss Alps. We identified 78 loci of ecological relevance (9%), which were mainly related to mean annual minimum temperature. Only four of these loci were common across the French and Swiss Alps. Finally, we discuss that the genomic characterization of these ecologically relevant loci, as identified in this study, opens up new perspectives for studying functional ecology in A. alpina, its relatives and other alpine plant species.  相似文献   

3.

Background and Aims

Gene flow is important in counteracting the divergence of populations but also in spreading genes among populations. However, contemporary gene flow is not well understood across alpine landscapes. The aim of this study was to estimate contemporary gene flow through pollen and to examine the realized mating system in the alpine perennial plant, Arabis alpina (Brassicaceae).

Methods

An entire sub-alpine to alpine landscape of 2 km2 was exhaustively sampled in the Swiss Alps. Eighteen nuclear microsatellite loci were used to genotype 595 individuals and 499 offspring from 49 maternal plants. Contemporary gene flow by pollen was estimated from paternity analysis, matching the genotypes of maternal plants and offspring to the pool of likely father plants. Realized mating patterns and genetic structure were also estimated.

Key Results

Paternity analysis revealed several long-distance gene flow events (≤1 km). However, most outcrossing pollen was dispersed close to the mother plants, and 84 % of all offspring were selfed. Individuals that were spatially close were more related than by chance and were also more likely to be connected by pollen dispersal.

Conclusions

In the alpine landscape studied, genetic structure occurred on small spatial scales as expected for alpine plants. However, gene flow also covered large distances. This makes it plausible for alpine plants to spread beneficial alleles at least via pollen across landscapes at a short time scale. Thus, gene flow potentially facilitates rapid adaptation in A. alpina likely to be required under ongoing climate change.  相似文献   

4.
Habitat types can induce genetic responses in species and may drive adaptive differentiation and evolutionary divergence of populations. In this study, we aimed at detecting loci indicative of adaptation for different habitat types in the alpine plant Arabis alpina. We used a dataset consisting of A. alpina plants collected in scree, nutrient-rich and moist habitat types in two independent regional replicates of the European Alps (the Swiss and French Alps). Genome scans resulting in 825 amplified fragment length polymorphisms (AFLPs) followed by outlier analysis, i.e. looking for excessive differentiation between habitat types, after accounting for heterozygosity and population structure, was used to detect loci under divergent selection for habitat type within and across the alpine regions. The outlier analyses resulted in the detection of a consistent single outlier locus, which showed a higher fragment frequency in moist compared to the other habitat types in both alpine regions. In addition, a posteriori tests for hierarchical population structuring in the dataset did not detect signals confounding selection at this locus (i.e. signals of regional population structure). Thus, we consider this locus indicative of habitat-mediated selection, and we subsequently sequence-characterized and compared it to the Arabidopsis genome. The sequence was found to be a putative homologue to the SIT4 phosphatase-associated family protein. The detection of this locus in two alpine regions and the availability of its genome sequence make this locus a strong candidate worth further exploration in the habitat-mediated selection and genetic adaptation of natural populations in the alpine plant A. alpina.  相似文献   

5.
In leaves of three alpine high mountain plants, Homogyne alpina, Ranunculus glacialis and Soldanella alpina, both photosystem II (PSII) and the enzyme catalase appeared to he highly resistant to photoinactivation under natural field conditions. While the Dl protein of PSII and catalase have a rapid turnover in light and require continuous new protein synthesis in non-adapted plants, little apparent photoinactivation of PSII or catalase was induced in the alpine plants by translation inhibitors or at low temperature, suggesting that turnover of the Dl protein and catalase was slow in these leaves. In vitro PSII was rapidly inactivated in light in isolated thylakoids from H. alpina and R. glacialis. In isolated intact chloroplasts from R. glacialis, photoinactivation of PSII was slower than in thylakoids. Partially purified catalase from R. glacialis and S. alpina was as sensitive to photoinactivation in vitro as catalases from other sources. Catalase from H. alpina had, however, a 10-fold higher stability in light. The levels of xanthophyll cycle carotenoids, of the antioxidants ascorbate and glulathione, and of the activities of catalase, superoxide dismutase and glutathione reductase were very high in S. alpina, intermediate in H. alpina, but very low in R. glacialis. However, isolated chloroplasts from all three alpine species contained much higher concentrations of ascorbate and glutathione than chloroplasts from lowland plants.  相似文献   

6.
Recent work in Arabis alpina, a perennial relative of Arabidopsis, has uncovered subtle differences in control of a gene that represses flowering which contributes to the polycarpic habit.  相似文献   

7.

Background and Aims

Anatolia is a biologically diverse, but phylogeographically under-explored region. It is described as either a centre of origin and long-term Pleistocene refugium, or as a centre for genetic amalgamation, fed from distinct neighbouring refugia. These contrasting hypotheses are tested through a global phylogeographic analysis of the arctic–alpine herb, Arabis alpina.

Methods

Herbarium and field collections were used to sample comprehensively the entire global range, with special focus on Anatolia and Levant. Sequence variation in the chloroplast DNA trnL-trnF region was examined in 483 accessions. A haplotype genealogy was constructed and phylogeographic methods, demographic analysis and divergence time estimations were used to identify the centres of diversity and to infer colonization history.

Key Results

Fifty-seven haplotypes were recovered, belonging to three haplogroups with non-overlapping distributions in (1) North America/Europe/northern Africa, (2) the Caucuses/Iranian Plateau/Arabian Peninsula and (3) Ethiopia–eastern Africa. All haplogroups occur within Anatolia, and all intermediate haplotypes linking the three haplogroups are endemic to central Anatolia and Levant, where haplotypic and nucleotide diversities exceeded all other regions. The local pattern of haplotype distribution strongly resembles the global pattern, and the haplotypes began to diverge approx. 2·7 Mya, coinciding with the climate cooling of the early Middle Pleistocene.

Conclusions

The phylogeographic structure of Arabis alpina is consistent with Anatolia being the cradle of origin for global genetic diversification. The highly structured landscape in combination with the Pleistocene climate fluctuations has created a network of mountain refugia and the accumulation of spatially arranged genotypes. This local Pleistocene population history has subsequently left a genetic imprint at the global scale, through four range expansions from the Anatolian diversity centre into Europe, the Near East, Arabia and Africa. Hence this study also illustrates the importance of sampling and scaling effects when translating global from local diversity patterns during phylogeographic analyses.  相似文献   

8.
Background and AimsThe transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic–alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer.MethodsIn a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece.Key ResultsThe self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories.ConclusionsOur study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.  相似文献   

9.
10.
11.
The life cycles of plants are characterized by two major life history transitions—germination and the initiation of flowering—the timing of which are important determinants of fitness. Unlike annuals, which make the transition from the vegetative to reproductive phase only once, perennials iterate reproduction in successive years. The floral repressor PERPETUAL FLOWERING 1 (PEP1), an ortholog of FLOWERING LOCUS C, in the alpine perennial Arabis alpina ensures the continuation of vegetative growth after flowering and thereby restricts the duration of the flowering episode. We performed greenhouse and garden experiments to compare flowering phenology, fecundity and seed traits between A. alpina accessions that have a functional PEP1 allele and flower seasonally and pep1 mutants and accessions that carry lesions in PEP1 and flower perpetually. In the garden, perpetual genotypes flower asynchronously and show higher winter mortality than seasonal ones. PEP1 also pleiotropically regulates seed dormancy and longevity in a way that is functionally divergent from FLC. Seeds from perpetual genotypes have shallow dormancy and reduced longevity regardless of whether they after‐ripened in plants grown in the greenhouse or in the experimental garden. These results suggest that perpetual genotypes have higher mortality during winter but compensate by showing higher seedling establishment. Differences in seed traits between seasonal and perpetual genotypes are also coupled with differences in hormone sensitivity and expression of genes involved in hormonal pathways. Our study highlights the existence of pleiotropic regulation of seed traits by hub developmental regulators such as PEP1, suggesting that seed and flowering traits in perennial plants might be optimized in a coordinated fashion.  相似文献   

12.
Tomentella is a genus of resupinate basidiomycetes usually fruiting on rotten wood. Ecological studies based on molecular methods have reported many Tomentella species as mycobionts of alpine ectomycorrhizal plants, thus highlighting their importance for plant establishment and development under extreme conditions. For the first time, we report fruiting of eight tomentelloid species in an alpine site, and describe Tomentella alpina as a new species. In the rDNA ITS phylogeny, Tomentella alpina forms a distinct clade in the T. stuposa complex, from which it can be clearly separated based on spore size and shape. Closely related taxa are briefly described, and synonymy of Tomentella fungicola with T. stuposa is rejected. Tomentella alpina was found to be one of the most important mycorrhizal partners of Kobresia myosuroides, Bistorta vivipara and Salix herbacea at this alpine site. The mutualistic association with plants is a very successful life strategy for Tomentella spp. growing in primary successional habitats, where the lack of organic matter is generally a growth-limiting factor.  相似文献   

13.
《Genomics》2019,111(6):1231-1238
Spodoptera litura is a polyphagous pest and can feed on more than 100 species of plants, causing great damage to agricultural production. The SNP results showed that there were gene exchanges between different regions. To explore the variations of larger segments in S. litura genome, we used genome resequencing samples from 14 regions of China, India, and Japan to study the copy number variations (CNVs). We identified 3976 CNV events and 1581 unique copy number variation regions (CNVRs) occupying the 108.5 Mb genome of S. litura. A total of 5527 genes that overlapped with CNVRs were detected. Selection signal analysis identified 19 shared CNVRs and 105 group-specific CNVRs, whose related genes were involved in various biological processes in S. litura. We constructed the first CNVs map in S. litura genome, and our findings will be valuable for understanding the genomic variations and population differences of S. litura.  相似文献   

14.
Chloroplast DNA sequencing and genomic in situ hybridization(GISH) were used to investigate the genomic origin and organizationof the alpine grass Poa jemtlandica. Using genomic probes ofP. alpina and P. flexuosa, GISH clearly distinguished betweenthese two putative parental genomes and thus confirmed the hybridnature of P. jemtlandica. The chloroplast trn L intron and trnL–trn F intergenic spacer (IGS) sequence genotypes ofP. flexuosa and P. jemtlandica were 100% identical but differedfrom those of P. alpina by a total of ten or 11 nucleotide substitutionsand six indels over 866 aligned positions, identifying P. flexuosaas the maternal parent of the P. jemtlandica population studiedhere and supporting a relatively recent origin of the hybrid.GISH revealed the presence of intergenomic translocations inthe hybrid genome, indicating that the two parental genomeshave undergone some rearrangements following hybridization.It is likely that some of these chromosome changes took placesoon after hybridization in order to overcome the adverse interactionsbetween the nuclear and the cytoplasmic genomes and to facilitatethe successful establishment of the newly formed hybrid. Thepresence of intergenomic chromosome changes may play an importantrole in the evolution of natural hybrids and the establishmentof new evolutionary lineages. Copyright 2000 Annals of BotanyCompany Natural hybridization, genome origin, intergenomic translocations, GISH, chloroplast DNA sequences, Poa jemtlandica  相似文献   

15.
Alpine plant species have been shown to exhibit a more pronounced increase in leaf photosynthesis under elevated CO2 than lowland plants. In order to test whether this higher carbon fixation efficiency will translate into increased biomass production under CO2 enrichment we exposed plots of narrow alpine grassland (Swiss Central Alps, 2470 m) to ambient (355 μl l-1) and elevated (680 μl l-1) CO2 concentration using open top chambers. Part of the plost received moderate mineral nutrient additions (40 kg ha-1 year-1 of nitrogen in a complete fertilizer mix). Under natural nutrient supply CO2 enrichment had no effect on biomass production per unit land area during any of the three seasons studied so far. Correspondingly, the dominant species Carex curvula and Leontodon helveticus as well as Trifolium alpinum did not show a growth response either at the population level or at the shoot level. However, the subdominant generalistic species Poa alpina strongly increased shoot growth (+47%). Annual root production (in ingrowth cores) was significantly enhanced in C. curvula in the 2nd and 3rd year of investigation (+43%) but was not altered in the bulk samples for all species. Fertilizer addition generally stimulated above-ground (+48%) and below-ground (+26%) biomass production right from the beginning. Annual variations in weather conditions during summer also strongly influenced above-ground biomass production (19–27% more biomass in warm seasons compared to cool seasons). However, neither nutrient availability nor climate had a significant effect on the CO2 response of the plants. Our results do not support the hypothesis that alpine plants, due to their higher carbon uptake efficiency, will increase biomass production under future atmospheric CO2 enrichment, at least not in such late successional communities. However, as indicated by the response of P. alpina, species-specific responses occur which may lead to altered community structure and perhaps ecosystem functioning in the long-term. Our findings further suggest that possible climatic changes are likely to have a greater impact on plant growth in alpine environments than the direct stimulation of photosynthesis by CO2. Counter-intuitively, our results suggest that even under moderate climate warming or enhanced atmospheric nitrogen deposition positive biomass responses to CO2 enrichment of the currently dominating species are unlikely.  相似文献   

16.
17.
Recombination and selection drive the extent of linkage disequilibrium (LD) among loci and therefore affect the reshuffling of adaptive genetic variation. However, it is poorly known to what extent the enrichment of transposable elements (TEs) in recombinationally‐inert regions reflects their inefficient removal by purifying selection and whether the presence of polymorphic TEs can modify the local recombination rate. In this study, we investigate how TEs and recombination interact at fine scale along chromosomes and possibly support linked selection in natural populations. Whole‐genome sequencing data of 304 individuals from nearby alpine populations of Arabis alpina were used to show that the density of polymorphic TEs is specifically correlated with local LD along chromosomes. Consistent with TEs modifying recombination, the characterization of 28 such LD blocks of up to 5.5 Mb in length revealed strong evidence of selective sweeps at a few loci through either site frequency spectrum or haplotype structure. A majority of these blocks were enriched in genes related to ecologically relevant functions such as responses to cold, salt stress or photoperiodism. In particular, the S‐locus (i.e., supergene responsible for strict outcrossing) was identified in a LD block with high levels of polymorphic TEs and evidence of selection. Another such LD block was enriched in cold‐responding genes and presented evidence of adaptive loci related to photoperiodism and flowering being increasingly linked by polymorphic TEs. These results are consistent with the hypothesis that TEs modify recombination landscapes and thus interact with selection in driving blocks of linked adaptive loci in natural populations.  相似文献   

18.

Background and Aims

High alpine environments are characterized by short growing seasons, stochastic climatic conditions and fluctuating pollinator visits. These conditions are rather unfavourable for sexual reproduction of flowering plants. Apomixis, asexual reproduction via seed, provides reproductive assurance without the need of pollinators and potentially accelerates seed development. Therefore, apomixis is expected to provide selective advantages in high-alpine biota. Indeed, apomictic species occur frequently in the subalpine to alpine grassland zone of the European Alps, but the mode of reproduction of the subnival to nival flora was largely unknown.

Methods

The mode of reproduction in 14 species belonging to seven families was investigated via flow cytometric seed screen. The sampling comprised 12 species typical for nival to subnival plant communities of the European Alps without any previous information on apomixis (Achillea atrata, Androsace alpina, Arabis caerulea, Erigeron uniflorus, Gnaphalium hoppeanum, Leucanthemopsis alpina, Oxyria digyna, Potentilla frigida, Ranunculus alpestris, R. glacialis, R. pygmaeus and Saxifraga bryoides), and two high-alpine species with apomixis reported from other geographical areas (Leontopodium alpinum and Potentilla crantzii).

Key Results

Flow cytometric data were clearly interpretable for all 46 population samples, confirming the utility of the method for broad screenings on non-model organisms. Formation of endosperm in all species of Asteraceae was documented. Ratios of endosperm : embryo showed pseudogamous apomixis for Potentilla crantzii (ratio approx. 3), but sexual reproduction for all other species (ratios approx. 1·5).

Conclusions

The occurrence of apomixis is not correlated to high altitudes, and cannot be readily explained by selective forces due to environmental conditions. The investigated species have probably other adaptations to high altitudes to maintain reproductive assurance via sexuality. We hypothesize that shifts to apomixis are rather connected to frequencies of polyploidization than to ecological conditions.  相似文献   

19.
Advances in high‐throughput sequencing have promoted the collection of reference genomes and genome‐wide diversity. However, the assessment of genomic variation among populations has hitherto mainly been surveyed through single‐nucleotide polymorphisms (SNPs) and largely ignored the often major fraction of genomes represented by transposable elements (TEs). Despite accumulating evidence supporting the evolutionary significance of TEs, comprehensive surveys remain scarce. Here, we sequenced the full genomes of 304 individuals of Arabis alpina sampled from four nearby natural populations to genotype SNPs as well as polymorphic long terminal repeat retrotransposons (polymorphic TEs; i.e., presence/absence of TE insertions at specific loci). We identified 291,396 SNPs and 20,548 polymorphic TEs, comparing their contributions to genomic diversity and divergence across populations. Few SNPs were shared among populations and overall showed high population‐specific variation, whereas most polymorphic TEs segregated among populations. The genomic context of these two classes of variants further highlighted candidate adaptive loci having a putative impact on functional genes. In particular, 4.96% of the SNPs were identified as nonsynonymous or affecting start/stop codons. In contrast, 43% of the polymorphic TEs were present next to Arabis genes enriched in functional categories related to the regulation of reproduction and responses to biotic as well as abiotic stresses. This unprecedented data set, mapping variation gained from SNPs and complementary polymorphic TEs within and among populations, will serve as a rich resource for addressing microevolutionary processes shaping genome variation.  相似文献   

20.
Mortierella alpina is a filamentous fungus commonly found in soil that is able to produce lipids in the form of triacylglycerols that account for up to 50% of its dry weight. Analysis of the M. alpina genome suggests that there is a phenylalanine-hydroxylating system for the catabolism of phenylalanine, which has never been found in fungi before. We characterized the phenylalanine-hydroxylating system in M. alpina to explore its role in phenylalanine metabolism and its relationship to lipid biosynthesis. Significant changes were found in the profile of fatty acids in M. alpina grown on medium containing an inhibitor of the phenylalanine-hydroxylating system compared to M. alpina grown on medium without inhibitor. Genes encoding enzymes involved in the phenylalanine-hydroxylating system (phenylalanine hydroxylase [PAH], pterin-4α-carbinolamine dehydratase, and dihydropteridine reductase) were expressed heterologously in Escherichia coli, and the resulting proteins were purified to homogeneity. Their enzymatic activity was investigated by high-performance liquid chromatography (HPLC) or visible (Vis)-UV spectroscopy. Two functional PAH enzymes were observed, encoded by distinct gene copies. A novel role for tetrahydrobiopterin in fungi as a cofactor for PAH, which is similar to its function in higher life forms, is suggested. This study establishes a novel scheme for the fungal degradation of an aromatic substance (phenylalanine) and suggests that the phenylalanine-hydroxylating system is functionally significant in lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号