首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of micronutrient enriched staple foods is an important breeding goal in view of the extensive problem of ‘hidden hunger’ caused by micronutrient malnutrition. In the present study, kernel iron (Fe) and zinc (Zn) concentrations were evaluated in a set of 31 diverse maize inbred lines in three trials at two locations – Delhi (Kharif 2007 & 2008) and Hyderabad (Rabi 2007–08). The ranges of kernel Fe and Zn concentrations were 13.95–39.31 mg/kg and 21.85–40.91 mg/kg, respectively, across the three environments. Pooled analysis revealed significant genotype × environment (G × E) interaction in the expression of both the micronutrient traits, although kernel Fe was found to be more sensitive to G × E as compared to kernel Zn. Seven inbred lines, viz., BAJIM-06-03, DQPM-6, CM212, BAJIM-06-12, DQPM-7, DQPM-2 and CM129, were found to be the most stable and promising inbred lines for kernel Zn concentration, while for kernel Fe concentration, no promising and stable genotypes could be identified. Analysis of molecular diversity in 24 selected inbred lines with phenotypic contrast for the two kernel micronutrient traits, using 50 SSR markers covering the maize genome, revealed high levels of polymorphisms (214 SSR alleles; mean PIC value?=?0.62). The phenotypically contrasting and genetically diverse maize inbred lines identified in this study could be potentially utilized in further studies on QTL analysis of kernel micronutrient traits in maize, and the stable and most promising kernel micronutrient-rich maize genotypes provide a good foundation for developing micronutrient-enriched maize varieties suitable for the Indian context.  相似文献   

2.
To better understand abscisic acid (ABA) regulation of the synthesis of chloroplast proteins in maize (Zea mays L.) in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE) and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C4 plants.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号