首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The inheritance of chloroplast (cp) DNA was examined in F1 hybrid progenies of two Populus deltoides intraspecific controlled crosses and three P. deltoides × P. nigra and two P. deltoides × P. maximowiczii interspecific controlled crosses by restriction fragment analysis. Southern blots of restriction digests of parental and progeny DNAs were hybridized to cloned cpDNA fragments of Petunia hybrida. Sixteen enzymes and five heterologous cpDNA probes were used to screen restriction fragment polymorphisms among the parents. The mode of cpDNA inheritance was demonstrated in progenies of P. deltoides × P. nigra crosses with 26 restriction fragment polymorphisms of cpDNA differentiating P. deltoides from P. nigra, as revealed by 12 enzyme-probe combinations, and in progenies of P. deltoides × P. maximowiczii crosses with 12 restriction fragment polymorphisms separating P. deltoides from P. maximowiczii, as revealed by 7 restriction enzyme-probe combinations. In all cases, F1 offspring of P. deltoides × P. nigra and P. deltoides × P. maximowiczii crosses had cpDNA restriction fragments of only their maternal P. deltoides parent. The results clearly demonstrated uniparental-maternal inheritance of the chloroplast genome in interspecific hybrids of P. deltoides with P. nigra and P. maximowiczii. Intraspecific P. deltoides hybrids also had the same cpDNA restriction fragments as their maternal parent. Maternal inheritance of the chloroplast genome in Populus is in agreement with what has been observed for most other angiosperms.  相似文献   

3.
Species‐specific microsatellite markers were obtained for the unambiguous recognition of five poplar species of ecological and commercial importance to eastern North America: the native species Populus balsamifera and Populus deltoides, the exotic species Populus maximowiczii, Populus nigra, Populus trichocarpa and their interspecific hybrids. Forty‐four of 71 tested primer pairs amplified simple sequence repeat (SSR) loci for all five taxa. Six of these loci showed non‐overlapping allelic diversity between species, including fixed differences. Together, they were useful to identify unambiguously the five taxa and to validate parental contributions in a group of hybrid progeny. These markers will be invaluable to detect gene flow from plantations of exotic poplar into adjacent stands of native species and between the two potentially hybridizing native species P. balsamifera and P. deltoides.  相似文献   

4.
Soil acidity and aluminum (Al) toxicity are major factors limiting crop yield and forest productivity worldwide. Hybrid poplar (Populus spp.) was used as a model to assess genotypic variation in Al resistance and physiological stress responses to Al in a woody tree species. Eight hybrid crosses of P. trichocarpa, P. deltoides and P. nigra were exposed to Al in solution culture. Resistance to Al varied by genotype and hybrid cross, with P. trichocarpa × P. deltoides crosses being most resistant, P. trichocarpa × P. nigra being intermediate and P. deltoides × P. nigra being most sensitive to Al. Total root Al accumulation was not a good indicator of Al resistance/sensitivity. However, the partitioning of Al into apoplastic and symplastic fractions indicated that differences in sensitivity among genotypes were associated with Al uptake into the symplasm. Aluminum treatment increased callose and pectin concentrations of root tips in all genotypes, but more prominently in Al sensitive genotypes/hybrids. In Al sensitive genotypes, higher levels of symplastic Al accumulation correlated with elevated concentrations of citrate, malate, succinate or formate in root tips, whereas organic acid accumulation was not as pronounced in Al resistant genotypes. These findings suggest that exclusion of Al from the symplast is associated with Al resistance. Further screening of Al tolerant poplar genotypes could yield successful candidates to be utilized for sustainable reforestation/reclamation and carbon sequestration projects where soil acidity may limit tree growth.  相似文献   

5.
Black poplar (Populus nigra L.) is a major species for European riparian forests but its abundance has decreased over the decades due to human influences. For restoration of floodplain woodlands, the remaining black poplar stands may act as source population. A potential problem is that P. nigra and Populus deltoides have contributed to many interspecific hybrids, which have been planted in large numbers. As these Populus x canadensis clones have the possibility to intercross with wild P. nigra trees, their offspring could establish themselves along European rivers. In this study, we have sampled 44 poplar seedlings and young trees that occurred spontaneously along the Rhine river and its tributaries in the Netherlands. Along these rivers, only a few native P. nigra L. populations exist in combination with many planted cultivated P. x canadensis trees. By comparison to reference material from P. nigra, P. deltoides and P. x canadensis, species-specific AFLP bands and microsatellite alleles indicated that nearly half of the sampled trees were not pure P. nigra but progeny of natural hybridisation that had colonised the Rhine river banks. The posterior probability method as implemented in NewHybrids using microsatellite data was the superior method in establishing the most likely parentage. The results of this study indicate that offspring of hybrid cultivated poplars compete for the same ecological niche as native black poplars. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

6.
Polymix breeding with paternity analysis (PMX/WPA) has been proposed as an alternative to traditional full-sib breeding and testing schemes. To fully capture the benefits of PMX/WPA, differential reproductive success (DRS) of pollen parents used in the polymix must be modest. DRS was evaluated in an operational test of PMX/WPA for a hybrid poplar breeding program. A 16-parent pollen polymix (Populus nigra L.) was used to pollinate seven clones of Populus deltoides (Bartr. ex. Marshall) under greenhouse breeding conditions. Progeny were grown out briefly and randomly sampled (357) prior to out-planting in field trials. Twenty-eight simple sequence repeat (SSR) loci were evaluated and 15 were selected for genetic characterization in small populations of three Populus spp (P. nigra, P. deltoides, and P. balsamifera spp trichocarpa Torr. & Gray). Seven loci were ultimately selected for paternity analysis of progeny. The average exclusion probability of the seven loci in P. nigra was 0.604; combined, the theoretical exclusion probability was 0.9999. However, only 95% of sampled progeny were unambiguously assigned a single paternal parent. Missing data likely accounted for most of the ambiguity. DRS was statistically significant though not prohibitive for practical utility of PMX/WPA as a breeding system. Of the 112 potential crosses in this study, 92 were represented. Eight of the 16 pollen parents contributed 83% of the progeny. Good pollen vigor, as measured by germination percent, did not ensure paternal success, but poor vigor was associated with lack of paternal success. PMX/WPA appears to be logistically and economically attractive for hybrid poplar breeding and testing.  相似文献   

7.
The genus Populus represents one of the most economically important groups of forest trees. It is composed by approximately 30 species used for wood and non-wood products, phytoremediation and biomass. Poplar is subjected to several biological and environmental threats although, compared to annual crops, we know far less about the genetic bases of biotic stress resistance. Woolly poplar aphid (Phloeomyzus passerinii) is considered a main pest of cultivated poplars in European and American countries. In this work we present two high density linkage maps in poplar obtained by a genotyping by sequencing (GBS) approach and the identification of QTLs involved in Ph. passerinii resistance. A total of 5,667 polymorphic markers (5,606 SNPs and 61 SSRs) identified on expressed sequences have been used to genotype 131 plants of an F1 population P ×canadensis obtained by an interspecific mate between Populus deltoides (resistant to woolly poplar aphid) and Populus nigra (susceptible to woolly poplar aphid). The two linkage maps, obtained following the two-way pseudo-testcross mapping strategy, have been used to investigate the genetic bases of woolly poplar aphid resistance. One major QTL and two QTLs with minor effects (mapped on LGV, LGXVI and LG XIX) explaining the 65.8% of the genetic variance observed in the progeny in response to Ph. passerinii attack were found. The high density coverage of functional markers allowed the identification of three genes belonging to disease resistance pathway as putative candidates for P. deltoides resistance to woolly poplar aphid. This work is the first report on genetic of woolly poplar aphid genetic resistance and the resistant loci associated markers identified represent a valuable tool in resistance poplar breeding programs.  相似文献   

8.
Poplars are among the few tree genera that can develop both ectomycorrhizal (ECM) and arbuscular (AM) associations; however, variable ratios of ECM/AM in dual mycorrhizal colonizations were observed in the roots of a variety of poplar species and hybrids. The objective of our study was to analyze the effect of internal and external factors on growth and dual AM and ECM colonization of poplar roots in three 12–15-year-old common gardens in Poland. We also analyzed the abundance of nonmycorrhizal fungal endophytes in the poplar roots. The Populus clones comprised black poplars (Populus deltoides and P. deltoides × Populus nigra), balsam poplars (Populus maximowiczii × Populus trichocarpa), and a hybrid of black and balsam poplars (P. deltoides × P. trichocarpa). Of the three sites that we studied, one was located in the vicinity of a copper smelter, where soil was contaminated with copper and lead. Poplar root tip abundance, mycorrhizal colonization, and soil fungi biomass were lower at this heavily polluted site. The total mycorrhizal colonization and the ratio of ECM and AM colonization differed among the study sites and according to soil depth. The influence of Populus genotype was significantly pronounced only within the individual study sites. The contribution of nonmycorrhizal fungal endophytes differed among the poplar clones and was higher at the polluted site than at the sites free of pollution. Our results indicate that poplar fine root abundance and AM and ECM symbiosis are influenced by environmental conditions. Further studies of different site conditions are required to characterize the utility of poplars for purposes such as the phytoremediation of polluted sites.  相似文献   

9.
10.
11.

Background and Aims

Stomata play an important role in both the CO2 assimilation and water relations of trees. Therefore, stomatal traits have been suggested as criteria for selection of clones or genotypes which are more productive and have larger water-use efficiency (WUE) than others. However, the relationships between plant growth, WUE and stomatal traits are still unclear depending on plant material (genus, species, families, genotypes) and, more precisely, on the strength of the relationships between the plants. In this study, the correlations between these three traits categories, i.e. plant growth, WUE and stomatal traits, were compared in two related poplar families.

Methods

Stomatal traits (stomatal density, length and ratio adaxial : abaxial stomatal densities) of a selection of F1 genotypes and the parents of two hybrid poplar families Populus deltoides ‘S9-2’ × P. nigra ‘Ghoy’ (D × N family, 50 F1) and P. deltoides ‘S9-2’ × P. trichocarpa ‘V24’ (D × T family, 50 F1) were measured, together with stem height and circumference. Carbon isotope discrimination (Δ) was determined and used as an indicator of leaf-level intrinsic WUE.

Key Results

Leaves of hybrids and parents were amphistomatous, except for the P. trichocarpa parent. Both families displayed high values of heritability for stomatal traits and Δ. In the progeny, the relationship between stem circumference and Δ was weak for the D × N family, while abaxial and total stomatal density were positively associated with stem dimensions for the D × T family only.

Conclusions

Genetic variation in stomatal traits and Δ was large within as well as between the different poplar species and their hybrids, but there were no direct relationships between stomatal traits and plant growth or Δ. As already noticed in various poplar hybrids, the absence of, or the weak, relationship between Δ and plant growth allows the possibility of selecting poplar genotypes combining high productivity and high WUE. In this study, stomatal traits are of limited value as criteria for selection of genotypes with good growth and large WUE.Key words: Adaxial and abaxial stomatal density, stomatal length, heritability, water-use efficiency (WUE), F1 hybrids, breeding, Populus deltoides, Populus nigra, Populus trichocarpa  相似文献   

12.
Restriction fragment analysis was conducted to determine interspecific chloroplast DNA (cpDNA) variation and genetic relationships among Populus deltoides, P. nigra, P. x canadensis (P. deltoides x P. nigra), and P. maximowiczii. Total cellular DNAs of these poplars were digested with 16 restriction endonucleases, and Southern blots of the restriction digests were probed with six different cloned cpDNA fragments from Petunia. P. deltoides, P. nigra, and P. maximowiczii each had a distinct chloroplast genome, separated by many restriction-site and restriction-fragment-length mutations, predominantly in the large single-copy region of the genome. P. x canadensis shared the same cpDNA restriction fragment patterns as P. deltoides var. deltoides. P. nigra was most diverged from P. deltoides, and P. deltoides showed close cpDNA relationships to P. maximowiczii. Nucleotide substitutions per site in cpDNA were 0.0036 between P. deltoides and P. maximowiczii, 0.0071 between P. nigra and P. maximowiczii, and 0.0077 between P. deltoides and P. nigra. We suggest that P. nigra should be classified in a new separate section, the Nigrae.  相似文献   

13.
14.
Using an enrichment procedure, we have cloned microsatellite repeats from black poplar (Populus nigra L.) and developed primers for microsatellite marker analysis. Ten primer pairs, mostly for trinucleotide repeats, produced polymorphic fragments in P. nigra. Some of them also showed amplification in other poplar species. (P. deltoides, P. tricocarpa, P. tremula, P. tremuloides, P. candicans, P. lasiocarpa). The best six loci were tested on 23 P. nigra genotypes collected across Europe. The microsatellites produced up to 12 alleles per locus in this set, with observed heterozygosity between 0.32 and 0.91.  相似文献   

15.
16.
Summary Interspecific pollen competition among Populus deltoides, P. nigra and P. maximowiczii in fertilizing P. deltoides ovules was studied by using a pollen mixture technique, allozymes and leaf morphology. The frequencies of F1 seedlings of different paternities in pollen-mix crosses showed highly significant (P<0.01) departures from the 11 ratio expected if pollen selection was random. P. deltoides pollen was the most competitive. The mean percentages of F1 seedlings of P. deltoides paternity in crosses with pollen mixes P. deltodes + P. nigra, P. deltoides + P. maximowiczii, and P. deltoides + P. nigra + P. maximowiczii were 95.0, 92.5, and 84.8, respectively. P. maximowiczii pollen was more competitive than P. nigra pollen, which was at a selective disadvantage. An average of 83.6% of F1 progenies of the eight crosses with P. nigra + P. maximowiczii pollen showed P. maximowiczii paternity. Also, in four crosses with P. deltoides + P. nigra + P. maximowiczii pollen, the relative proportion of P. deltoides × P. maximowiczii seedlings (13.4%) was higher than that of P. deltoides × P. nigra seedlings (1.8%). Pollen proportions in the pollen mixes and pollen size did not significantly affect the competitive ability of the pollen. The relative pollen competitive ability indicated reproductive affinities among the species.  相似文献   

17.
Genome-wide comparison of two poplar genotypes with different growth rates   总被引:1,自引:0,他引:1  
  相似文献   

18.
A rare phenomenon of the occurrence of novel non-parental chloroplast DNA (cpDNA) variants in natural sexual interspecific hybrids between Populus deltoides var deltoides and P. nigra, P. x canadensis is described. Restriction fragment variation of cpDNA in 17 P. x canadensis cultivars was examined and compared with that of representative samples of P. deltoides and P. nigra using 83 combinations of 16 restriction enzymes and six Petunia hybrida cpDNA probes. Twelve cultivars had one to five novel non-parental cpDNA fragments in the chloroplast genome region homologous to the 9.0-kb PstI cpDNA fragment of Petunia from the large single-copy region.  相似文献   

19.
Interspecific hybrids of Populus species are known for their superior growth. In this study, we examined the effect of the genetic background and contrasting environmental conditions on growth and searched for quantitative trait loci (QTL) affecting growth traits. To this end, two hybrid poplar families resulting from controlled crosses, Populus deltoides ‘S9-2’ × P. nigra ‘Ghoy’ (D × N, 180 F1) and P. deltoides ‘S9-2’ × P. trichocarpa ‘V24’ (D × T, 182 F1), were grown at two contrasting sites, Northern Italy and Central France. At the end of the second growing season, tree dimensions (stem height, circumference, and volume) were assessed. The performances of both families significantly differed within and between sites. Tree volume was significantly larger at the Italian site as compared to the French site. Genotype by environment interactions were significant but low for both families and for all growth traits. Tight correlations among the individual growth traits indicated that there may be a common genetic mechanism with pleiotropic effects on these growth traits. In line with previous studies, linkage groups I, VII, IX, X, XVI, XVII, and XIX appeared to have genomic regions with the largest effects on growth traits. This study revealed that (1) both families have high potential for selection of superior poplar hybrids due to the pronounced heterosis (hybrid vigor) and the large genetic variability in terms of growth and (2) the choice of site is crucial for poplar cultivation. Dillen and Storme contributed equally to the work. An erratum to this article can be found at  相似文献   

20.
In the southeastern United States, the establishment of short-rotation intensively cultured plantations of hybrid poplar has been hindered by its susceptibility to stem cankers. We evaluated the tradeoffs between biomass yield and disease tolerance in hybrid poplar genotypes belonging to P. deltoides × P. maximowiczii (DM), P. deltoides × P. nigra (DN), P. trichocarpa × P. maximowiczii (TM), and P. deltoides × P. deltoides (DD) taxa. We hypothesized that canker resistant genotypes will have thicker bark but bark thickness and biomass yield will be negatively correlated. After two growing seasons, the DD genotypes developed thicker bark compared to the genotypes of other taxa and bark thickness was not correlated with biomass yield in the DD genotypes (R2 = 0.002). However, in the TM, DM, and DN genotypes, bark thickness was negatively correlated with biomass yield (R2 = 0.33–0.77). Disease incidence studies revealed that the DM genotypes were most susceptible to canker whereas no disease was detected in DD genotypes. Furthermore, bark analysis conducted by Fourier transform infrared spectroscopy coupled with multivariate analysis showed that that DD genotypes to be chemically separate from the three hybrid genotypes and that bark chemistry was correlated with canker disease incidence. Taken together, these results reveal that it is possible to generate hybrid poplar genotypes with thicker bark, disease resistance, and higher biomass yields. This insight should guide further efforts to develop genetically improved hybrid poplar genotypes, both in terms of biomass yield and disease tolerance, for cultivation in the southeastern United States. Hybrid poplar cultivation in southeastern United States is hindered by its susceptibility to stem cankers. We evaluated tradeoffs between yield and canker disease resistance in various hybrid poplar genotypes. After two growing seasons, the DD genotypes showed disease resistance and developed thicker bark that was chemically distinct from the other genotypes. Bark thickness was not correlated with yield in the DD genotypes but was negatively correlated with yield in the other genotypes. These results will guide the development of hybrid poplar genotypes that are both disease resistant and high yielding for cultivation in the southeastern United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号