首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Though being able to encode various kinds of bioactive peptides, small open reading frames (sORFs) are poorly annotated in many genomic data. The present study was conducted to evaluate the potential of sORFs in encoding antimicrobial peptides (AMPs) in the basal chordate model Ciona intestinalis. About 4.8 m genomic sequence was first retrieved for sORFs mining by the program sORFfinder, then the sORFs were translated into amino acid sequences for AMP prediction via CAMP server, and thereafter, ten putative AMPs were selected for expression and antimicrobial activity validation. In total, over 180 peptides deduced from the sORFs were predicted to be AMPs. Among the ten tested peptides, six were found to have significant expressed sequence tag matches, providing strong evidence for gene expression; five were proved to be active against the bacterial strains. These results indicate that many sORFs in C. intestinalis genome contain AMP information. This work can serve as an important initial step to investigate the role of sORFs in the innate defense of C. intestinalis. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Patterns of molecular evolution in birds have long been considered anomalous. Compared with other vertebrates, birds have reduced levels of genetic divergence between groups of similar taxonomic ranks for a variety of nuclear and mitochondrial markers. This observation led to the avian constraint hypothesis, which identifies increased functional constraint on avian proteins as the cause for the reduction in genetic divergence. Subsequent investigations provided additional support for the avian constraint hypothesis when rates of molecular evolution were found to be slower in birds than in mammals in a variety of independent calibrations. It is possible to test the avian constraint hypothesis as an explanation for this avian slowdown by comparing DNA sequence data from protein-coding regions in birds and homologous regions in mammals. The increased selective constraints should lead to a reduction in the proportion of amino acid replacement substitutions. To test for such a decrease, we calculated the numbers of amino acid replacement substitutions per replacement site (dN) and silent substitutions per silent site (dS) for the complete mitochondrial cytochrome b gene using 38 avian and 43 mammalian comparisons that were phylogenetically independent. We find that dN/dS is significantly smaller in birds than in mammals. This difference cannot be explained by differences in codon bias affecting dS values. We suggest that the avian slowdown can be explained, at least in part, by a decreased tolerance for amino acid substitutions in avian species relative to mammalian species.  相似文献   

3.
The compositional distributions of large (main-band) DNA fragments from eight birds belonging to eight different orders (including both paleognathous and neognathous species) are very broad and extremely close to each other. These findings, which are paralleled by the compositional similarity of homologous coding sequences and their codon positions, support the idea that birds are a monophyletic group.The compositional distribution of third-codon positions of genes from chicken, the only avian species for which a relatively large number of coding sequences is known, is very broad and bimodal, the minor GC-richer peak reaching 100% GC. The very high compositional heterogeneity of avian genomes is accompanied (as in the case of mammalian genomes) by a very high speciation rate compared to cold-blooded vertebrates which are characterized by genomes that are much less heterogeneous. The higher GC levels attained by avian compared to mammalian genomes might be correlated with the higher body temperature (41–43°C) of birds compared to mammals (37°C).A comparison of GC levels of coding sequences and codon positions from man and chicken revealed very close average GC levels and standard deviations. Homologous coding sequences and codon positions from man and chicken showed a surprisingly high degree of compositional similarity which was, however, higher for GC-poor than for GC-rich sequences. This indicates that GC-poor isochores of warm-blooded vertebrates reflect the composition of the isochores of the genome of the common reptilian ancestor of mammals and birds, which underwent only a small compositional change at the transition from cold- to warm-blooded vertebrates. In contrast, the GC-rich isochores of birds and mammals are the result of large compositional changes at the same evolutionary transition, where were in part different in the two classes of warm-blooded vertebrates.Correspondence to: G. Bernaadi  相似文献   

4.
Astroviruses are small, nonenveloped, single-stranded RNA viruses that cause diarrhea in a wide variety of mammals and birds. On the surface of the viral capsid are globular spikes that are thought to be involved in attachment to host cells. To understand the basis of species specificity, we investigated the structure of an avian astrovirus capsid spike and compared it to a previously reported human astrovirus capsid spike structure. Here we report the crystal structure of the turkey astrovirus 2 (TAstV-2) capsid surface spike domain, determined to 1.5-Å resolution, and identify three conserved patches on the surface of the spike that are candidate avian receptor-binding sites. Surprisingly, the overall TAstV-2 capsid spike structure is unique, with only distant structural similarities to the human astrovirus capsid spike and other viral capsid spikes. There is an absence of conserved putative receptor-binding sites between the human and avian spikes. However, there is evidence for carbohydrate-binding sites in both human and avian spikes, and studies with human astrovirus 1 (HAstV-1) suggest a minor role in infection for chondroitin sulfate but not heparin. Overall, our structural and functional studies provide new insights into astrovirus host cell entry, species specificity, and evolution.  相似文献   

5.
Evolution of preproinsulin gene in birds   总被引:2,自引:0,他引:2  
The coding region of the preproinsulin gene has been cloned and partly sequenced in a variety of marine and terrestrial birds (28 species). All genes showed the "ancestral" structure with a large intron-2. The size of intron-2 changed considerably during the evolution of birds (2.4-4.2kb). The hydrophobicity of signal peptides was conserved. Bird C-peptides were predicted to be 28 amino acids long, but circulating C-peptides would be only 26 amino acids long, with Passer as a possible exception. Bird C-peptides were found to lack the sequences identified in mammals as responsible for peptide bioactivity and the structure of the central part. In contrast, predicted insulin sequences were highly conserved. Only two types of analog were identified: the hypoactive form (GluA8), present only in Anseriformes and the hyperactive form (His A8), present in all other species. Based on 3'-nucleotide sequence analysis (extending into intron-2), birds appeared to be monophyletic. Five groups were clearly identified: Paleognathae, Galliformes, Anseriformes, Passeriformes, and Charadriiformes. Paleognathae were suggested as the basal group, supporting the traditional view of avian evolution. Subsequent branching identified a gallo-anserae group and a group containing all other Neognathae. Surprisingly, Columba livia (Columbiforme order) clustered with Galliformes. With represented species, Procellariiformes and possibly Ciconiiformes, and Pelicaniformes were suggested as paraphyletic, in agreement with conclusions from some studies based on mitochondrial DNA sequences.  相似文献   

6.
7.
P A Ritchie  D M Lambert 《Génome》2000,43(4):613-618
We have determined the nucleotide sequence of the entire mitochondrial control region (CR) of the Adélie penguin (Pygoscelis adeliae) from Antarctica. Like in most other birds, this CR region is flanked by the gene nad6 and transfer (t)RNA trnE(uuc) at the 5' end and the gene rns and trnF(gaa) at the 3' end. Sequence analysis shows that the Adelie penguin CR contains many elements in common with other CRs including the termination associated sequences (TAS), conserved F, E, D, and C boxes, the conserved sequence block (CSB)-1, as well as the putative light and heavy strand promoters sites (LSP-HSP). We report an extraordinarily long avian control region (1758 bp) which can be attributed to the presence, at the 3' peripheral domain, of five 81-bp repeat sequences, each containing a putative LSP-HSP, followed by 30 tetranucleotide microsatellite repeat sequences consisting of (dC-dA-dA-dA)30. The microsatellite and the 81-bp repeat reside in an area known to be transcribed in other species.  相似文献   

8.
ABSTRACT Avian bycatch, a common and undesired occurrence in small mammal studies, should be minimized by researchers. We examined effects of trap covering, treadle color (copper or yellow plastic), trap size (mouse or rat), and trap weathering (traps <1 yr or ≥ 1 yr old) on avian bycatch during 3 years. We found that covered traps caught 81% fewer birds and 70% fewer small mammals than did uncovered traps, that mouse traps caught 30% more birds and 38% more small mammals than did rat traps, and no capture differences for treadle color or trap weathering. Covered traps effectively reduced avian bycatch and should be used when reduced small-mammal capture rates are acceptable.  相似文献   

9.
The erythrocytes of the adult Cormorant contain two hemoglobin components in a ratio of 83% Hb A to 17% Hb D. The primary structures of the alpha A-, alpha D- and beta-chains are presented. The globin chains were separated by high-performance liquid chromatography and cleaved enzymatically and/or chemically. The native chains and their fragments were sequenced using liquid- or gas-phase sequencers, and the peptides aligned using the homology to human and to avian hemoglobin sequences. Compared to human hemoglobin, there are 46 amino-acid replacements in the alpha A-chains (67.4% homology), 65 replacements in the alpha D-chains (53.9% homology) and 45 replacements in the beta-chains (69.2% homology). In the functionally important regions, the percentage of amino-acid substitutions, as compared to human hemoglobin, is 13.2% in the alpha A-, 19.0% in the alpha D - and 16.0% in the beta-chains. The importance of the replacement beta 135 arginine (other birds)----glycine (Cormorant) in the phosphate-binding pocket and its effect on phosphate binding will be discussed.  相似文献   

10.
Takumi Takeuchi 《Biologia》2010,65(5):874-879
Dermatopontin is a tyrosine-rich acidic extracellular matrix protein of 22 kD with possible functions in cellmatrix interactions and matrix assembly. Database of GenBank+EMBL+DDBJ sequences from Nucleotide, Gene, and Expressed Sequence Tag (EST) Divisions was searched with a keyword “dermatopontin” or mouse dermatopontin amino acid sequence. In addition to five mammals previously described, five mammalian, two bird, one fish dermatopontin genes were detected in vertebrates. Additionally, a goat EST was also shown as goat dermatopontin missing 5′-end of the coding region. Moreover, a mRNA sequence of rhesus monkey dermatopontin was identified, but the deduced amino acid sequence was terminated abruptly due to a nonsense codon. For three 6-residue repeat regions (D-R-E/Q-W-X-F/Y) that may function as part of a glycosaminoglycan binding site, the first repeat sequence is D-R-Q-W-N-Y in all mammals while Glutamine is substituted for Leucine in birds. The second and the third repeats are conserved in all vertebrates. The N-Y-D sequence, the consensus in many amine oxidases, is conserved in mammals except rodents. Asparagine is substituted for Threonine in birds. The tetrapeptide R-G-A-T sequence possibly recognizing the integrin family is conserved in mammals and birds, but Alanine was substituted for Glutamine in zebrafish resulting in loss of activity. In conclusion, functionally significant amino acid sequences in vertebrate dermatopontins are conserved in mammals, while they are not necessarily identified in birds and fish. The original function of vertebrate dermatopontins may be glycosaminoglycan binding and functions as a ligand for integrin and an amine oxidase may be gained in the process of evolution.  相似文献   

11.
The complete mitochondrial genome of the alligator, Alligator mississippiensis, was sequenced. The size of the molecule is 16,642 nucleotides. Previously reported rearrangements of tRNAs in crocodile mitochondrial genomes were confirmed and, relative to mammals, no other deviations of gene order were observed. The analysis of protein-coding genes of the alligator showed an evolutionary rate that is roughly the same as in mammals. Thus, the evolutionary rate in the alligator is faster than that in birds as well as that in cold-blooded vertebrates. This contradicts hypotheses of constant body temperatures or high metabolic rate being correlated with elevated molecular evolutionary rates. It is commonly acknowledged that birds are the closest living relatives to crocodiles. Birds and crocodiles represent the only archosaurian survivors of the mass extinction at the Cretaceous/Tertiary boundary. On the basis of mitochondrial protein- coding genes, the Haemothermia hypothesis, which defines birds and mammals as sister groups and thus challenges the traditional view, could be rejected. Maximum-likelihood branch length data of amino acid sequences suggest that the divergence between the avian and crocodilian lineages took place at approximately equal to 254 MYA.   相似文献   

12.
Recently, an unexpected, positive correlation between the rate of evolution of mitochondrial proteins and longevity was reported. Here we re-analyze this relationship in various mammalian lineages using a bayesian phylogenetic analysis of amino-acid sequences, allowing for variable evolutionary rates across sites and species. A negative relationship between protein evolutionary rate and species longevity is reported for all oxidative phosphorylation complexes. A detailed analysis of the cytochrome b in 528 mammals reinforced this result, which contradicts previous publications. Reconducting the analysis in birds yielded similar results. We explain the discrepancy between this and previous reports by our improved taxon sampling and more appropriate methodology: unlike distance-based methods, the tree-based bayesian approach can take into account the high variation of substitution rate across amino-acid sites, and the resulting multiple substitution events. We discuss how our analysis contradicts Rottenberg’s rationale, but does not dismiss his proposal of a longevity-dependent selective pressure on mitochondrial mutation rate in mammals and birds. This is because his interpretation invokes adaptation as the single evolutionary force at work, disregarding the effects of mutation, genetic drift, and purifying selection.  相似文献   

13.
Prion diseases are fatal neurodegenerative disorders in man and animal associated with conformational conversion of a cellular prion protein (PrPc) into the pathologic isoform (PrPSc). The function of PrPcand the tertiary structure of PrPScare unclear. Various data indicate which parts of PrP might control the species barrier in prion diseases and the binding of putative factors to PrP. To elucidate these features, we analyzed the evolutionary conservation of the prion protein. Here, we add the primary PrP structures of 20 ungulates, three rodents, three carnivores, one maritime mammal, and nine birds. Within mammals and birds we found a high level of amino acid sequence identity, whereas between birds and mammals the overall homology was low. Various structural elements were conserved between mammals and birds. Using the CONRAD space-scale alignment, which predicts conserved and variable blocks, we observed similar patterns in avian and mammalian PrPs, although 130 million years of separate evolution lie in between. Our data support the suggestion that the repeat elements might have expanded differently within the various classes of vertebrates. Of note is the N-terminal part of PrP (amino acid residues 23-90), which harbors insertions and deletions, whereas in the C-terminal portion (91-231) mainly point mutations are found. Strikingly, we found a high level of conservation of sequences that are not part of the structured segment 121-231 of PrPcand of the structural elements therein, e.g. the N-terminal region from amino acid residue 23-90 and the regions located upstream of alpha-helices 1 and 3.  相似文献   

14.
Cell survival depends on essential processes in mitochondria. Various proteases within these organelles regulate mitochondrial biogenesis and ensure the complete degradation of excess or damaged proteins. Many of these proteases are highly conserved and ubiquitous in eukaryotic cells. They can be assigned to three functional classes: processing peptidases, which cleave off mitochondrial targeting sequences of nuclearly encoded proteins and process mitochondrial proteins with regulatory functions; ATP-dependent proteases, which either act as processing peptidases with regulatory functions or as quality-control enzymes degrading non-native polypeptides to peptides; and oligopeptidases, which degrade these peptides and mitochondrial targeting sequences to amino acids. Disturbances of protein degradation within mitochondria cause severe phenotypes in various organisms and can lead to the induction of apoptotic programmes and cell-specific neurodegeneration in mammals. After an overview of the proteolytic system of mitochondria, we will focus on versatile functions of ATP-dependent AAA proteases in the inner membrane. These conserved proteolytic machines conduct protein quality surveillance of mitochondrial inner membrane proteins, mediate vectorial protein dislocation from membranes, and, acting as processing enzymes, control ribosome assembly, mitochondrial protein synthesis, and mitochondrial fusion. Implications of these functions for cell-specific axonal degeneration in hereditary spastic paraplegia will be discussed.  相似文献   

15.
Bacterial small proteins (below 50 amino acids) encoded by small open reading frames (sORFs) are recognized as an emerging class of functional molecules that have been largely overlooked in the past. While some were uncovered serendipitously, global approaches have recently been developed to detect these sORFs. A large portion of small proteins appears to be hydrophobic and located in the bacterial membrane. In the present review, we describe functional small hydrophobic proteins discovered in pathogenic bacteria and report recent advances in the discovery of additional ones. Small membrane proteins contribute to bacterial adaptation to changing environments and often appear to be implicated in negative feedback regulation loops by modulating the function or stability of larger membrane proteins. A subset of these proteins belongs to toxin-antitoxin modules. We highlight the features of characterized hydrophobic small proteins that may pave the way for identification of the functional small proteins among novel sORFs discovered. Besides providing new insights into bacterial pathogenesis, identification of naturally occurring small hydrophobic proteins of pathogenic bacteria can lead to new therapeutic interventions, as recently shown with the development of synthetic peptides derived from natural small proteins that display antibacterial or antivirulence properties.  相似文献   

16.
17.
18.
Amino acid sequences for identified prolactin (PRL)-releasing peptides (PrRPs) were conserved in mammals (>90%) or teleost fishes (100%), but there were considerable differences between these classes in the sequence (<65%) as well as in the role of PrRP. In species other than fishes and mammals, we have identified frog PrRP. The cDNA encoding Xenopus laevis prepro-PrRP, which can generate putative PrRPs, was cloned and sequenced. Sequences for the coding region showed higher identity with teleost PrRPs than mammalian homologues, but suggested the occurrence of putative PrRPs of 20 and 31 residues as in mammals. The amino acid sequence of PrRP20 was only one residue different from teleost PrRP20, but shared 70% identity with mammalian PrRP20s. In primary cultures of bullfrog (Rana catesbeiana) pituitary cells, Xenopus PrRPs increased prolactin concentrations in culture medium to 130–160% of the control, but PrRPs was much less potent than thyrotropin-releasing hormone (TRH) causing a three- to four-fold increase in prolactin concentrations. PrRP mRNA levels in the developing Xenopus brain peak in early prometamorphosis, different from prolactin levels. PrRP may not be a major prolactin-releasing factor (PRF), at least in adult frogs, as in mammals.  相似文献   

19.
An Arabidopsis cDNA clone that defines a new class of plant serine/threonine receptor kinases was found to be a member of a family of four clustered genes (lecRK-a1–a4) which have been cloned, sequenced and mapped on chromosome 3. This family belongs to a large superfamily encoding putative receptors with an extracellular domain homologous to legume lectins and appears to be conserved at least among dicots. In the Columbia ecotype only the lecRK-a1 and perhaps the lecRK-a3 gene is functional, since lecRK-a2 is disrupted by a Ty-copia retroelement and lecRK-a4 contains a frameshift mutation. Structural analysis of the lecRK-a1 and lecRK-a3 deduced amino-acid sequences suggests that the lectin domain is unlikely to be involved in binding monosaccharides but could interact with complex glycans and/or with hydrophobic ligands. Immunodetection of lecRK gene products in plasma membranes purified by free-flow electrophoresis showed that the lecRK-a proteins are probably highly glycosylated integral plasma membrane components.  相似文献   

20.
Here we present the results of a large-scale bioinformatics annotation of non-coding RNA loci in 48 avian genomes. Our approach uses probabilistic models of hand-curated families from the Rfam database to infer conserved RNA families within each avian genome. We supplement these annotations with predictions from the tRNA annotation tool, tRNAscan-SE and microRNAs from miRBase. We identify 34 lncRNA-associated loci that are conserved between birds and mammals and validate 12 of these in chicken. We report several intriguing cases where a reported mammalian lncRNA, but not its function, is conserved. We also demonstrate extensive conservation of classical ncRNAs (e.g., tRNAs) and more recently discovered ncRNAs (e.g., snoRNAs and miRNAs) in birds. Furthermore, we describe numerous “losses” of several RNA families, and attribute these to either genuine loss, divergence or missing data. In particular, we show that many of these losses are due to the challenges associated with assembling avian microchromosomes. These combined results illustrate the utility of applying homology-based methods for annotating novel vertebrate genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号