首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Due to the abundant presence of alkylating agents in living cells and the environment, DNA alkylation is generally unavoidable. Among the alkylated DNA lesions, O4-alkylthymidine (O4-alkyldT) are known to be highly mutagenic and persistent in mammalian tissues. Not much is known about how the structures of the alkyl group affect the repair and replicative bypass of the O4-alkyldT lesions, or how the latter process is modulated by translesion synthesis polymerases. Herein, we synthesized oligodeoxyribonucleotides harboring eight site-specifically inserted O4-alkyldT lesions and examined their impact on DNA replication in Escherichia coli cells. We showed that the replication past all the O4-alkyldT lesions except (S)- and (R)-sBudT was highly efficient, and these lesions directed very high frequencies of dGMP misincorporation in E. coli cells. While SOS-induced DNA polymerases play redundant roles in bypassing most of the O4-alkyldT lesions, the bypass of (S)- and (R)-sBudT necessitated Pol V. Moreover, Ada was not involved in the repair of any O4-alkyldT lesions, Ogt was able to repair O4-MedT and, to a lesser extent, O4-EtdT and O4-nPrdT, but not other O4-alkyldT lesions. Together, our study provided important new knowledge about the repair of the O4-alkyldT lesions and their recognition by the E. coli replication machinery.  相似文献   

2.
Reaction of bifunctional electrophiles with DNA in the presence of peptides can result in DNA-peptide cross-links. In particular, the linkage can be formed in the major groove of DNA via the exocyclic amino group of adenine (N6-dA). We previously demonstrated that an A family human polymerase, Pol ν, can efficiently and accurately synthesize DNA past N6-dA-linked peptides. Based on these results, we hypothesized that another member of that family, Escherichia coli polymerase I (Pol I), may also be able to bypass these large major groove DNA lesions. To test this, oligodeoxynucleotides containing a site-specific N6-dA dodecylpeptide cross-link were created and utilized for in vitro DNA replication assays using E. coli DNA polymerases. The results showed that Pol I and Pol II could efficiently and accurately bypass this adduct, while Pol III replicase, Pol IV, and Pol V were strongly inhibited. In addition, cellular studies were conducted using E. coli strains that were either wild type or deficient in all three DNA damage-inducible polymerases, i.e., Pol II, Pol IV, and Pol V. When single-stranded DNA vectors containing a site-specific N6-dA dodecylpeptide cross-link were replicated in these strains, the efficiencies of replication were comparable, and in both strains, intracellular bypass of the lesion occurred in an error-free manner. Collectively, these findings demonstrate that despite its constrained active site, Pol I can catalyze DNA synthesis past N6-dA-linked peptide cross-links and is likely to play an essential role in cellular bypass of large major groove DNA lesions.  相似文献   

3.
Escherichia coli DNA polymerase IV (Pol IV, also known as DinB) is a Y-family DNA polymerase capable of catalyzing translesion DNA synthesis (TLS) on certain DNA lesions, and accumulating data suggest that Pol IV may play an important role in copying various kinds of spontaneous DNA damage including N2-dG adducts and alkylated bases. Pol IV has a unique ability to coexist with Pol III on the same β clamp and to positively dissociate Pol III from β clamp in a concentration-dependent manner. Reconstituting the entire process of TLS in vitro using E. coli replication machinery and Pol IV, we observed that a replication fork stalled at (−)-trans-anti-benzo[a]pyrene-N2-dG lesion on the leading strand was efficiently and quickly recovered via two sequential switches from Pol III to Pol IV and back to Pol III. Our results suggest that TLS by Pol IV smoothes the way for the replication fork with minimal interruption.  相似文献   

4.
Escherichia coli has three DNA damage-inducible DNA polymerases: DNA polymerase II (Pol II), DNA polymerase IV (Pol IV), and DNA polymerase V (Pol V). While the in vivo function of Pol V is well understood, the precise roles of Pol IV and Pol II in DNA replication and repair are not as clear. Study of these polymerases has largely focused on their participation in the recovery of failed replication forks, translesion DNA synthesis, and origin-independent DNA replication. However, their roles in other repair and recombination pathways in E. coli have not been extensively examined. This study investigated how E. coli's inducible DNA polymerases and various DNA repair and recombination pathways function together to convey resistance to 4-nitroquinoline-1-oxide (NQO), a DNA damaging agent that produces replication blocking DNA base adducts. The data suggest that full resistance to this compound depends upon an intricate interplay among the activities of the inducible DNA polymerases and recombination. The data also suggest new relationships between the different pathways that process recombination intermediates.  相似文献   

5.
Translesion DNA synthesis (TLS) by specialized DNA polymerases (Pols) is a conserved mechanism for tolerating replication blocking DNA lesions. The actions of TLS Pols are managed in part by ring-shaped sliding clamp proteins. In addition to catalyzing TLS, altered expression of TLS Pols impedes cellular growth. The goal of this study was to define the relationship between the physiological function of Escherichia coli Pol IV in TLS and its ability to impede growth when overproduced. To this end, 13 novel Pol IV mutants were identified that failed to impede growth. Subsequent analysis of these mutants suggest that overproduced levels of Pol IV inhibit E. coli growth by gaining inappropriate access to the replication fork via a Pol III-Pol IV switch that is mechanistically similar to that used under physiological conditions to coordinate Pol IV-catalyzed TLS with Pol III-catalyzed replication. Detailed analysis of one mutant, Pol IV-T120P, and two previously described Pol IV mutants impaired for interaction with either the rim (Pol IVR) or the cleft (Pol IVC) of the β sliding clamp revealed novel insights into the mechanism of the Pol III-Pol IV switch. Specifically, Pol IV-T120P retained complete catalytic activity in vitro but, like Pol IVR and Pol IVC, failed to support Pol IV TLS function in vivo. Notably, the T120P mutation abrogated a biochemical interaction of Pol IV with Pol III that was required for Pol III-Pol IV switching. Taken together, these results support a model in which Pol III-Pol IV switching involves interaction of Pol IV with Pol III, as well as the β clamp rim and cleft. Moreover, they provide strong support for the view that Pol III-Pol IV switching represents a vitally important mechanism for regulating TLS in vivo by managing access of Pol IV to the DNA.  相似文献   

6.
7.
DNA polymerase μ (Pol μ) is a DNA-dependent DNA polymerase closely related to terminal deoxynucleotidyl transferase (TdT), and prone to induce template/primer misalignments and misincorporation. In addition to a proposed general role in non-homologous end joining of double-strand breaks, its mutagenic potential and preferential expression in secondary lymphoid tissues support a role in somatic hypermutation (SHM) of immunoglobulin genes. Here, we show that human Pol μ protein is expressed in the nucleus of centroblasts obtained from human tonsils, forming a characteristic foci pattern resembling that of other DNA repair proteins in response to DNA damage. Overexpression of human Pol μ in Ramos cells, in which the SHM process is constitutive, augmented the somatic mutations specifically at the variable (V) region of the immunoglobulin genes. The nature of the mutations introduced, mostly base substitutions, supports the contribution of Pol μ to mutation of G and C residues during SHM. In vitro analysis of Pol μ misincorporation on specific templates, that mimic DNA repair intermediates and correspond to mutational hotspots, indicated that many of the mutations observed in vivo can be explained by the capacity of Pol μ to induce transient template/primer misalignments.  相似文献   

8.
One of the major lipid peroxidation products trans-4-hydroxy-2-nonenal (HNE), forms cyclic propano- or ethenoadducts bearing six- or seven-carbon atom side chains to G > C ? A > T. To specify the role of SOS DNA polymerases in HNE-induced mutations, we tested survival and mutation spectra in the lacZα gene of M13mp18 phage, whose DNA was treated in vitro with HNE, and which was grown in uvrA? Escherichia coli strains, carrying one, two or all three SOS DNA polymerases. When Pol IV was the only DNA SOS polymerase in the bacterial host, survival of HNE-treated M13 DNA was similar to, but mutation frequency was lower than in the strain containing all SOS DNA polymerases. When only Pol II or Pol V were present in host bacteria, phage survival decreased dramatically. Simultaneously, mutation frequency was substantially increased, but exclusively in the strain carrying only Pol V, suggesting that induction of mutations by HNE is mainly dependent on Pol V. To determine the role of Pol II and Pol IV in HNE induced mutagenesis, Pol II or Pol IV were expressed together with Pol V. This resulted in decrease of mutation frequency, suggesting that both enzymes can compete with Pol V, and bypass HNE-DNA adducts in an error-free manner. However, HNE-DNA adducts were easily bypassed by Pol IV and only infrequently by Pol II.Mutation spectrum established for strains expressing only Pol V, showed that in uvrA? bacteria the frequency of base substitutions and recombination increased in relation to NER proficient strains, particularly mutations at adenine sites. Among base substitutions A:T  C:G, A:T  G:C, G:C  A:T and G:C  T:A prevailed.The results suggest that Pol V can infrequently bypass HNE-DNA adducts inducing mutations at G, C and A sites, while bypass by Pol IV and Pol II is error-free, but for Pol II infrequent.  相似文献   

9.
10.
Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a stable ternary complex of Pol II, the replicative polymerase Pol III core complex and the dimeric processivity clamp, β. Single-molecule experiments reveal that the interactions of Pol II and Pol III with β allow for rapid exchange during DNA synthesis. As with another TLS polymerase, Pol IV, increasing concentrations of Pol II displace the Pol III core during DNA synthesis in a minimal reconstitution of primer extension. However, in contrast to Pol IV, Pol II is inefficient at disrupting rolling-circle synthesis by the fully reconstituted Pol III replisome. Together, these data suggest a β-mediated mechanism of exchange between Pol II and Pol III that occurs outside the replication fork.  相似文献   

11.
Humans possess multiple specialized DNA polymerases that continue DNA replication beyond a variety of DNA lesions. DNA polymerase kappa (Pol κ) bypasses benzo[a]pyrene diolepoxide-N2-deoxyguanine (BPDE-N2-dG) DNA adducts in an almost error-free manner. In the previous work, we changed the amino acids close to the adducts in the active site and examined the bypass efficiency. The substitution of alanine for phenylalanine 171 (F171A) enhanced by 18-fold in vitro, the efficiencies of dCMP incorporation opposite (−)- and (+)-trans-anti-BPDE-N2-dG. In the present study, we established human cell lines that express wild-type Pol κ (POLK+/−), F171A (POLK F171A/−) or lack expression of Pol κ (POLK−/−) to examine the in vivo significance. These cell lines were generated with Nalm-6, a human pre-B acute lymphoblastic leukemia cell line, which has high efficiency for gene targeting. Mutations were analyzed with shuttle vectors having (−)- or (+)-trans-anti-BPDE-N2-dG in the supF gene. The frequencies of mutations were in the order of POLK−/− > POLK+/− > POLK F171A/− both in (−)- and (+)-trans-anti-BPDE-N2-dG. These results suggest that F171 may function as a molecular brake for bypass across BPDE-N2-dG by Pol κ and raise the possibility that the cognate substrates for Pol κ are not BP adducts in DNA but may be lesions in DNA induced by endogenous mutagens.  相似文献   

12.
Electronic excited molecular oxygen (singlet oxygen, 1O2) is known to damage DNA, yielding mutations. In this work, the mutagenicity induced by 1O2 in a defined sequence of DNA was investigated after replication in Escherichia coli mutants deficient for nucleotide and base excision DNA repair pathways. For this purpose a plasmid containing a 1O2-damaged 14 base oligonucleotide was introduced into E.coli by transfection and mutations were screened by hybridization with an oligonucleotide with the original sequence. Mutagenesis was observed in all strains tested, but it was especially high in the BH20 (fpg), AYM57 (fpg mutY) and AYM84 (fpg mutY uvrC) strains. The frequency of mutants in the fpg mutY strain was higher than in the triple mutant fpg mutY uvrC, suggesting that activity of the UvrABC excinuclease can favor the mutagenesis of these lesions. Additionally, most of the mutations were G→T and G→C transversions, but this was dependent on the position of the guanine in the sequence and on repair deficiency in the host bacteria. Thus, the kind of repair and the mutagenesis associated with 1O2-induced DNA damage are linked to the context of the damaged sequence.  相似文献   

13.
14.
Crystal structure of the human O(6)-alkylguanine-DNA alkyltransferase   总被引:3,自引:1,他引:2  
The mutagenic and carcinogenic effects of simple alkylating agents are mainly due to O6-alkylation of guanine in DNA. This lesion results in transition mutations. In both prokaryotic and eukaryotic cells, repair is effected by direct reversal of the damage by a suicide protein, O6-alkylguanine-DNA alkyltransferase. The alkyltransferase removes the alkyl group to one of its own cysteine residues. However, this mechanism for preserving genomic integrity limits the effectiveness of certain alkylating anticancer agents. A high level of the alkyltransferase in many tumour cells renders them resistant to such drugs. Here we report the X-ray structure of the human alkyltransferase solved using the technique of multiple wavelength anomalous dispersion. This structure explains the markedly different specificities towards various O6-alkyl lesions and inhibitors when compared with the Escherichia coli protein (for which the structure has already been determined). It is also used to interpret the behaviour of certain mutant alkyltransferases to enhance biochemical understanding of the protein. Further examination of the various models proposed for DNA binding is also permitted. This structure may be useful for the design and refinement of drugs as chemoenhancers of alkylating agent chemotherapy.  相似文献   

15.
DNA damage, arising from endogenous metabolism or exposure to environmental agents, may perturb the transmission of genetic information by blocking DNA replication and/or inducing mutations, which contribute to the development of cancer and likely other human diseases. Hydroxyl radical attack on the C1′, C3′ and C4′ of 2-deoxyribose can give rise to epimeric 2-deoxyribose lesions, for which the in vivo occurrence and biological consequences remain largely unexplored. Through independent chemical syntheses of all three epimeric lesions of 2′-deoxyguanosine (dG) and liquid chromatography-tandem mass spectrometry analysis, we demonstrated unambiguously the presence of substantial levels of the α-anomer of dG (α-dG) in calf thymus DNA and in DNA isolated from mouse pancreatic tissues. We further assessed quantitatively the impact of all four α-dN lesions on DNA replication in Escherichia coli by employing a shuttle-vector method. We found that, without SOS induction, all α-dN lesions except α-dA strongly blocked DNA replication and, while replication across α-dA was error-free, replicative bypass of α-dC and α-dG yielded mainly C→A and G→A mutations. In addition, SOS induction could lead to markedly elevated bypass efficiencies for the four α-dN lesions, abolished the G→A mutation for α-dG, pronouncedly reduced the C→A mutation for α-dC and triggered T→A mutation for α-dT. The preferential misincorporation of dTMP opposite the α-dNs could be attributed to the unique base-pairing properties of the nucleobases elicited by the inversion of the configuration of the N-glycosidic linkage. Our results also revealed that Pol V played a major role in bypassing α-dC, α-dG and α-dT in vivo. The abundance of α-dG in mammalian tissue and the impact of the α-dNs on DNA replication demonstrate for the first time the biological significance of this family of DNA lesions.  相似文献   

16.
17.
A series of oxaliplatin derivatives with (1R,2R)‐N1‐alkyl‐1,2‐cyclohexane‐1,2‐diamine (alkyl=Bu or iPr) as carrier ligands and 1‐(methoxy‐ or methyl‐substituted benzyl)azetidine‐3,3‐dicarboxylate anions as leaving groups were synthesized and spectrally characterized. Generally, Complexes 10 – 15 with an iPr substituent at N(1) showed higher activities in vitro than carboplatin against MCF‐7 human breast carcinoma and A549 human non‐small‐cell lung cell lines, although they were less potent than oxaliplatin. The typical complex 14 exhibited cytotoxicity superior to that of carboplatin and comparable to that of oxaliplatin against two selected tumor cell lines. Additionally, agarose gel electrophoresis was applied to investigate the DNA‐cleavage ability of complex 14 , which demonstrated that it has a different mode of DNA distortion from that of oxaliplatin.  相似文献   

18.
The homodimeric Escherichia coli β sliding clamp contains two hydrophobic clefts with which proteins involved in DNA replication, repair and damage tolerance interact. Deletion of the C-terminal five residues of β (βC) disrupted both clefts, severely impairing interactions of the clamp with the DnaX clamp loader, as well as the replicative DNA polymerase, Pol III. In order to determine whether both clefts were required for loading clamp onto DNA, stimulation of Pol III replication and removal of clamp from DNA after replication was complete, we developed a method for purification of heterodimeric clamp proteins comprised of one wild-type subunit (β+), and one βC subunit (β+C). The β+C heterodimer interacted normally with the DnaX clamp loader, and was loaded onto DNA slightly more efficiently than was β+. Moreover, β+C interacted normally with Pol III, and stimulated replication to the same extent as did β+. Finally, β+C was severely impaired for unloading from DNA using either DnaX or the δ subunit of DnaX. Taken together, these findings indicate that a single cleft in the β clamp is sufficient for both loading and stimulation of Pol III replication, but both clefts are required for unloading clamp from DNA after replication is completed.  相似文献   

19.
Living cells possess a panel of specialized DNA polymerases that deal with the large diversity of DNA lesions that occur in their genomes. How specialized DNA polymerases gain access to the replication intermediate in the vicinity of the lesion is unknown. Using a model system in which a single replication blocking lesion can be bypassed concurrently by two pathways that leave distinct molecular signatures, we analyzed the complex interplay among replicative and specialized DNA polymerases. The system involves a single N-2-acetylaminofluorene guanine adduct within the NarI frameshift hot spot that can be bypassed concurrently by Pol II or Pol V, yielding a −2 frameshift or an error-free bypass product, respectively. Reconstitution of the two pathways using purified DNA polymerases Pol III, Pol II and Pol V and a set of essential accessory factors was achieved under conditions that recapitulate the known in vivo requirements. With this approach, we have identified the key replication intermediates that are used preferentially by Pol II and Pol V, respectively. Using single-hit conditions, we show that the β-clamp is critical by increasing the processivity of Pol II during elongation of the slipped −2 frameshift intermediate by one nucleotide which, surprisingly, is enough to support subsequent elongation by Pol III rather than degradation. Finally, the proofreading activity of the replicative polymerase prevents the formation of a Pol II-mediated −1 frameshift product. In conclusion, failure or success of TLS pathways appears to be the net result of a complex interplay among DNA polymerases and accessory factors.  相似文献   

20.
N2,3-Ethenoguanine (N2,3-ϵG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2′-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2′-fluoro-N2,3-ϵ-2′-deoxyarabinoguanosine to investigate the miscoding potential of N2,3-ϵG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N2,3-ϵG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N2,3-ϵG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N2,3-ϵG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N2,3-ϵG:dCTP base pair, whereas only one appears to be present in the case of the N2,3-ϵG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N2,3-ϵG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号