首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Autophagy is a highly conserved lysosomal degradation process essential in tumorigenesis. However, the involvement of autophagy-related long noncoding RNAs (lncRNAs) in low-grade glioma (LGG) remains unclear. In this study, we established an autophagy-related lncRNA prognostic signature for patients with LGG and assess its underlying functions. We used univariate Cox, least absolute shrinkage and selection operator and multivariate Cox regression models to establish an autophagy-related lncRNA prognostic signature. Kaplan–Meier survival analysis, receiver operating characteristic curve, nomogram, C-index, calibration curve and clinical decision-making curve were used to assess the predictive capability of the identified signature. A signature comprising nine autophagy-related lncRNAs (AL136964.1, ARHGEF26-AS1, PCED1B-AS1, AS104072.1, PRKCQ-AS1, LINC00957, AS125616.1, PSMB8-AS1 and AC087741.1) was identified as a prognostic model. Patients with LGG were divided into the high- and low-risk cohorts based on the median model-based risk score. The survival analysis revealed a 10-year survival rate of 9.3% (95% CI 1.91–45.3%) and 13.48% (95% CI 4.52–40.2%) in high-risk patients in the training and validation sets, respectively, and 48.4% (95% CI 24.7–95.0%) and 48.4% (95% CI 28.04–83.4%) in low-risk patients in the training and validation sets, respectively. This finding suggested a relatively low survival in high-risk patients. In addition, the lncRNA signature was independently prognostic and potentially associated with the progression of LGG. Therefore, the 9-autophagy-related-lncRNA signature may play a crucial role in the diagnosis and treatment of LGG, which may offer new avenues for tumour-targeted therapy.

  相似文献   

2.
3.
This study aimed to identify prognostic long noncoding RNAs (lncRNAs) signature for predicting the prognosis of patients with rectal cancer. LncRNA-sequencing data and clinicopathological data of patients with rectal cancer were retrieved from The Cancer Genome Atlas database. Univariate and multivariate Cox proportional hazards regression analysis, the least absolute shrinkage, and selection operator analysis and the Kaplan-Meier curve method were employed to identify prognostic lncRNAs and construct multi-lncRNA signature. Finally, five lncRNAs (AC079789.1, AC106900.2, AL121987.1, AP004609.1, and LINC02163) were identified to construct a five-lncRNA signature. According to the five-lncRNA signature, patients with rectal cancer were divided into a high-risk group and low-risk group. Patients with rectal cancer had significantly poorer overall survival in the high-risk group than in the low-risk group. We used a time-dependent receiver operating characteristic curve to assess the power of the five-lncRNA signature by calculating the area under the curve (AUC). The AUCs for predicting 3-year survival and 5-year survival were 0.742 and 0.935, respectively, which indicated a good performance of the five-lncRNA signature. The five-lncRNA signature was independently associated with the prognosis of patients with rectal cancer through using univariate and multivariate Cox regression analysis. The biological function of the five lncRNAs was enriched in some cancer-related biological processes and pathways by performing functional enrichment analysis of their correlated protein-coding genes. In conclusion, we developed a five-lncRNA signature as a potential indicator for rectal cancer.  相似文献   

4.
5.
6.
Bladder urothelial carcinoma is a malignant tumor with a high incidence in the uropoietic system. Considerable studies have shown that long noncoding RNA (lncRNA) plays an important role in the development and progression of bladder urothelial carcinoma. In this study, the lncRNA expression and clinical data of 377 bladder urothelial carcinoma patients were obtained from The Cancer Genome Atlas database and differentially expressed lncRNAs in cancer and normal groups were evaluated. Univariate COX and multivariate COX regression analyses of prognosis were performed on differentially expressed lncRNAs in the training data sets, six prognosis-related lncRNAs (LINC02195, LINC01484, LINC01468, SMC2-AS1, AC011298.1, and PTPRD-AS1) were assessed, and a six-lncRNA signature was constructed. The predictive capability of this six-lncRNA signature was validated in the testing data sets and entire data sets. The prognostic ability of the six-lncRNA signature was independent of other clinical elements after multivariate COX regression and stratified analyses of with other clinical elements. We performed functional enrichment analysis with the six prognosis-related lncRNAs. Results of functional enrichment revealed that these prognosis-related lncRNAs might promote the development and metastasis of bladder urothelial carcinoma. In summary, the six-lncRNA signature that we developed could effectively predict the prognosis of bladder urothelial carcinoma patients. This six-lncRNA signature might be a novel independent prognostic marker of bladder urothelial carcinoma. Moreover, it also provides novel insights into the mechanism of bladder urothelial carcinoma.  相似文献   

7.
Long noncoding RNAs (lncRNAs) have recently emerged as important biomarkers of cancer progression. Here, we proposed to develop a lncRNA-based signature with a prognostic value for colorectal cancer (CRC) overall survival (OS). Through mining microarray datasets, we analyzed the lncRNA expression profiles of 122 patients with CRC from Gene Expression Omnibus. Associations between lncRNA and CRC OS were firstly evaluated through univariate Cox regression analysis. A random survival forest method was applied for further screening of the lncRNA signature, which resulted in eight lncRNAs, including PEG3-AS1, LOC100505715, MINCR, DBH-AS1, LINC00664, FAM224A, LOC642852, and LINC00662. Combination of the eight lncRNAs weighted by their multivariate Cox regression coefficients formed a prognostic signature, through which, we could divide the 122 patients with CRC into two subgroups with significantly different OS. Good robustness of the lncRNA signature's prognostic value was verified through an independent data set consisting of 55 patients with CRC. In addition, gene set enrichment analysis indicated the potential association between high prognostic value and oxygen metabolism-related processes. This result should indicate that lncRNAs could be a useful signature for CRC prognosis.  相似文献   

8.
9.
Current research indicate that long noncoding RNAs (lncRNAs) are associated with the progression of various cancers and can be used as prognostic biomarkers. This study aims to construct a prognostic lncRNA signature for the risk assessment of Uterine corpus endometrial carcinoma (UCEC). The RNA-Seq expression profile and corresponding clinical data of UCEC patients obtained from The Cancer Genome Atlas database. First, some prognosis-related lncRNAs were obtained by univariate Cox analysis. The minimum absolute contraction and selection operator (LASSO) regression and the Cox proportional hazard regression method were used to further identify the lncRNA prognostic model. Finally, seven lncRNAs (AC110491.1, AL451137.1, AC005381.1, AC103563.2, AC007422.2, AC108025.2, and MIR7-3HG) were identified as potential prognostic factors. According to the model constructed by the above analysis, the risk score of each UCEC patient was calculated, and the patients were classified into high and low-risk groups. The low-risk group had significant survival benefits. Moreover, we constructed a nomogram that incorporated independent prognostic factors (age, tumor stage, tumor grade, and risk score). The c-index value for evaluating the predictive nomogram model was 0.801. The area under the curve was 0.797 (3-year survival). The calibration curve also showed that there was a satisfactory agreement between the predicted and observed values in the probability of 1-, 3-, and 5-year overall survival. On the basis of the coexpression relationship, we established a coexpression network of lncRNA-messenger RNA (mRNA) of the 7-lncRNA. The Kyoto Encyclopedia of Genes and Genomes analysis of the coexpressing mRNAs showed that the main pathways related to the 7-lncRNA signature were neuroactive ligand-receptor interaction, serotonergic synapse, and gastric cancer pathway. Therefore, our study revealed that the 7-lncRNA could be used to predict the prognosis of UCEC and for postoperative treatment and follow-up.  相似文献   

10.
Autophagy-related long non-coding RNAs (lncRNAs) disorders are related to the occurrence and development of breast cancer. The purpose of this study is to explore whether autophagy-related lncRNA can predict the prognosis of breast cancer patients. The autophagy-related lncRNAs prognostic signature was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression. We identified five autophagy-related lncRNAs (MAPT-AS1, LINC01871, AL122010.1, AC090912.1, AC061992.1) associated with prognostic value, and they were used to construct an autophagy-related lncRNA prognostic signature (ALPS) model. ALPS model offered an independent prognostic value (HR = 1.664, 1.381-2.006), where this risk score of the model was significantly related to the TNM stage, ER, PR and HER2 status in breast cancer patients. Nomogram could be utilized to predict survival for patients with breast cancer. Principal component analysis and Sankey Diagram results indicated that the distribution of five lncRNAs from the ALPS model tends to be low-risk. Gene set enrichment analysis showed that the high-risk group was enriched in autophagy and cancer-related pathways, and the low-risk group was enriched in regulatory immune-related pathways. These results indicated that the ALPS model composed of five autophagy-related lncRNAs could predict the prognosis of breast cancer patients.  相似文献   

11.
N6-methyladenosine (m6A) methyltransferase has been shown to be an oncogene in a variety of cancers. Nevertheless, the relationship between the long non-coding RNAs (lncRNAs) and hepatocellular carcinoma (HCC) remains elusive. We integrated the gene expression data of 371 HCC and 50 normal tissues from The Cancer Genome Atlas (TCGA) database. Differentially expressed protein-coding genes (DE-PCGs)/lncRNAs (DE-lncRs) analysis and univariate regression and Kaplan–Meier (K–M) analysis were performed to identify m6A methyltransferase-related lncRNAs. Three prognostic lncRNAs were selected by univariate and LASSO Cox regression analyses to construct the m6A methyltransferase-related lncRNA signature. Multivariate Cox regression analyses illustrated that this signature was an independent prognostic factor for overall survival (OS) prediction. The Gene Set Enrichment Analysis (GSEA) suggested that the m6A methyltransferase-related lncRNAs were involved in the immune-related biological processes (BPs) and pathways. Besides, we discovered that the lncRNAs signature was correlated with the tumor microenvironment (TME) and the expression of critical immune checkpoints. Tumor Immune Dysfunction and Exclusion (TIDE) analysis revealed that the lncRNAs could predict the clinical response to immunotherapy. Our study had originated a prognostic signature for HCC based on the potential prognostic m6A methyltransferase-related lncRNAs. The present study had deepened the understanding of the TME status of HCC patients and laid a theoretical foundation for the choice of immunotherapy.  相似文献   

12.
Currently, traditional predictors of prognosis (tumor size, nodal status, progesterone receptor [PR], estrogen receptor [ER], or human epidermal growth factor receptor-2 [HER2]) are insufficient for precise survival prediction for triple-negative breast cancer (TNBC). Long noncoding RNAs (lncRNAs) have been observed to exert critical functions in cancer, including in TNBC. Nevertheless, systematically tracking expression-based lncRNA biomarkers based on the sequence data for the prediction of prognosis in TNBC has not yet been investigated. To ascertain whether biomarkers exist that can distinguish TNBC from adjacent normal tissue or nTNBC, we implemented a comprehensive analysis of lncRNA expression profiles and clinical data of 1097 BC samples from The Cancer Genome Atlas database. A total of 1510 differentially expressed lncRNAs in normal and TNBC samples were extracted. Similarly, 672 differentially expressed lncRNAs between nTNBC and TNBC samples were detected. The receiver operating characteristic curve analysis indicated that three upregulated lncRNAs (AC091043.1, AP000924.1, and FOXCUT) may be of strong diagnostic value for predicting the existence of TNBC in the training and validation sets (area under the curve (AUC > 0.85). Kaplan-Meier analysis demonstrated that the other three lncRNAs (AC010343.3, AL354793.1, and FGF10-AS1) were associated with the prognosis of TNBC patients (P < 0.05). We used the three overall survival (OS)-related lncRNAs to establish a three-lncRNA signature. Multivariate Cox regression analysis suggested that the three-lncRNA signature was a prognostic factor independent of other clinical variables ( P < 0.01) for predicting OS in TNBC patients that could be utilized to classify patients into high- or low-risk subgroups. Our results might provide efficient signatures for clinical diagnosis and prognostic evaluation of TNBC.  相似文献   

13.
《Genomics》2023,115(3):110621
BackgroundThe prognosis of CCA is extremely poor, making it one of the most lethal cancers. Therefore, there is a need to elucidate the pathogenic mechanisms of CCA. In this study, we aimed at identifying lncRNA-related prognostic signatures for CCA through bioinformatics analysis and further validated their functions in CCA tumorigenesis and progression.MethodsThe RNA-seq data of CCA were downloaded from public databases. Differentially expressed lncRNAs (DElncRNAs) were screened. Then, candidate OS- and DFS-related DElncRNAs were selected through Kaplan–Meier survival analysis. Furthermore, LASSO regression was performed to establish the OS and DFS signatures, respectively. Multivariate COX models and nomograms for overall survival (OS) and disease-free survival (DFS) were established based on OS/DFS signature and clinical data. Hub lncRNAs were identified and enrichment analyses were performed to explore their potential functions. Finally, in vitro and in vivo models were used to validate the effects of the hub lncRNAs in CCA tumorigenesis and progression.ResultsA total of 925 DElncRNAs were selected, of which six candidate OS-related lncRNAs and 15 candidate DFS-related lncRNAs were identified. The OS and DFS signatures were then established using four lncRNAs, respectively. We found that the OS signature and vascular invasion were independent risk factors for the OS of CCA, while the DFS signature, vascular invasion, and CA19–9 were independent risk factors for the DFS of CCA. Then, nomograms were established to achieve personalized CCA recurrence and death prediction. Furthermore, our study uncovered that MIR4435-2HG and GAPLINC might play crucial roles in CCA progression and be selected as hub lncRNAs. GO and KEGG enrichment analyses revealed that the two hub lncRNAs were closely related to CCA tumorigenesis. Finally, we demonstrated that MIR4435-2HG and GAPLINC can stimulate CCA proliferation and migration in vitro and in vivo.ConclusionsThe established OS and DFS signatures are independent risk factors for OS and DFS of CCA patients, respectively. MIR4435-2HG and GAPLINC were identified as hub lncRNAs. In vitro and in vivo models revealed that MIR4435-2HG and GAPLINC can prompt CCA progression, which might be novel prognostic biomarkers and therapeutic targets for CCA.  相似文献   

14.
Dysregulation of long noncoding RNAs (lncRNAs) has been found in a large number of human cancers, including colon cancer. Therefore, the implementation of potential lncRNAs biomarkers with prognostic prediction value are very much essential. GSE39582 data set was downloaded from database of Gene Expression Omnibus. Re-annotation analysis of lncRNA expression profiles was performed by NetAffx annotation files. Univariate and multivariate Cox proportional analyses helped select prognostic lncRNAs. Algorithm of random survival forest-variable hunting (RSF-VH) together with stepwise multivariate Cox proportional analysis were performed to establish lncRNA signature. The log-rank test was carried out to analyze and compare the Kaplan-Meier survival curves of patients’ overall survival (OS). Receiver operating characteristic (ROC) analysis was used for comparing the survival prediction regarding its specificity and sensitivity based on lncRNA risk score, followed by calculating the values of area under the curve (AUC). The single-sample GSEA (ssGSEA) analysis was used to describe biological functions associated with this signature. Finally, to determine the robustness of this model, we used the validation sets including GSE17536 and The Cancer Genome Atlas data set. After re-annotation analysis of lncRNAs, a total of 14 lncRNA probes were obtained by univariate and multivariate Cox proportional analysis. Then, the RSF-VH algorithm and stepwise multivariate Cox analysis helped to build a five-lncRNA prognostic signature for colon cancer. The patients in group with high risk showed an obviously shorter survival time compared with patients in group with low risk with AUC of 0.75. In addition, the five-lncRNA signature can be used to independently predict the survival of patients with colon cancer. The ssGSEA analysis revealed that pathways such as extracellular matrix-receptor interaction was activated with an increase in risk score. These findings determined the strong power of prognostic prediction value of this five-lncRNA signature for colon cancer.  相似文献   

15.
The immune system and the tumor interact closely during tumor development. Aberrantly expressed long non-coding RNAs (lncRNAs) may be potentially applied as diagnostic and prognostic markers for gastric cancer (GC). At present, the diagnosis and treatment of GC patients remain a formidable clinical challenge. The present study aimed to build a risk scoring system to improve the prognosis of GC patients. In the present study, ssGSEA was used to evaluate the infiltration of immune cells in GC tumor tissue samples, and the samples were split into a high immune cell infiltration group and a low immune cell infiltration group. About 1262 differentially expressed lncRNAs between the high immune cell infiltration group and the low immune cell infiltration group. About 3204 differentially expressed lncRNAs between GC tumor tissues and paracancerous tissues were identified. Then, 621 immune-related lncRNAs were screened using a Venn analysis based on the above results, and 85 prognostic lncRNAs were identified using a univariate Cox analysis. We constructed a prognostic signature using LASSO analysis and evaluated the predictive performance of the signature using ROC analysis. GO and KEGG enrichment analyses were performed on the lncRNAs using the R package, ‘clusterProfiler’. The TIMER online database was used to analyze correlations between the risk score and the abundances of the six types of immune cells. In conclusion, our study found that specific immune-related lncRNAs were clinically significant. These lncRNAs were used to construct a reliable prognostic signature and analyzed immune infiltrates, which may assist clinicians in developing individualized treatment strategies for GC patients.  相似文献   

16.
17.
BackgroundIncreasing numbers of studies have elucidated the role of competitive endogenous RNA (ceRNA) networks in carcinogenesis. However, the potential role of the paclitaxel-related ceRNA network in the innate mechanism and prognosis of pancreatic cancer has not been identified.MethodsComprehensive bioinformatics analyses were performed to identify drug-related miRNAs (DRmiRNAs), drug-related mRNAs (DRmRNAs) and drug-related lncRNAs (DRlncRNAs) and construct a ceRNA network. The ssGSEA and CIBERSORT algorithms were utilized for immune cell infiltration analysis. Additionally, we validated our paclitaxel-related ceRNA regulatory axis at the gene expression level; functional experiments were conducted to explore the biological functions of the key genes.ResultsA total of 182 mRNAs, 13 miRNAs, and 53 lncRNAs were confirmed in the paclitaxel-related ceRNA network. In total, 6 mRNAs, 4 miRNAs, and 6 lncRNAs were identified to establish a risk signature and exhibited optimal prognostic effects. The mRNA signature can predict the abundance of immune cell infiltration and the sensitivity of different chemotherapeutic drugs and may also have a guiding effect in immune checkpoint therapy. A potential PART1/hsa-mir-21/SCRN1 axis was confirmed according to the ceRNA theory and was verified by qPCR. The results indicated that PART1 knockdown markedly increased hsa-mir-21 expression but inhibited SCRN1 expression, weakening the proliferation and migration abilities.ConclusionsWe hypothesized that the paclitaxel-related ceRNA network strongly influences the innate mechanism, prognosis, and immune infiltration of pancreatic cancer. Our risk signatures can accurately predict survival outcomes and provide a clinical basis.  相似文献   

18.
Ferroptosis is a newly discovered form of programmed cell death, which has unique biological effects on metabolism and redox biology. In this study, the prognostic value of ferroptosis-related genes was investigated in lower-grade gliomas (LGG). We downloaded the ferroptosis-related genes from the FerrDb dataset. Univariate Cox and LASSO regression analyses were applied to identify genes correlated with overall survival (OS). Subsequently, 12 ferroptosis-related genes were screened to establish the prognostic signature using stepwise multivariate Cox regression. According to the median value of risk scores, patients were divided into low- and high-risk subgroups. The Kaplan-Meier curves showed the high-risk group had a lower OS. The predictive power of the risk model was validated using the CGGA. Functional analysis revealed that the terms associated with plasma membrane receptor complex, immune response and glutamate metabolic process were primarily related to the risk model. Moreover, we established a nomogram that had a strong forecasting ability for the 1-, 3- and 5-year OS. In addition, we compared the risk scores between different clinical features. We also detected infiltration of macrophages and monocytes in different subgroups. Overall, our study identified the prognostic signature of 12 ferroptosis-related genes, which has the potential to predict the prognosis of LGG.  相似文献   

19.
Low-grade glioma (LGG) is a heterogeneous tumour with the median survival rate less than 10 years. Therefore, it is urgent to develop efficient immunotherapy strategies of LGG. In this study, we analysed mutation profiles based on the data of 510 LGG patients from the Cancer Genome Atlas (TCGA) database and investigated the prognostic value of mutated genes and evaluate their immune infiltration. Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to indicate the characteristics of gliomas that respond to immune checkpoint blockade (ICB) therapy. Univariate and multivariate cox regression analysis was performed to identify indicators to construct the nomogram model. 485 (95.47%) of 508 LGG samples showed gene mutation, and 9 mutated genes were significantly related to overall survival (OS), among which 6 mutated genes were significantly correlated with OS between mutation and wildtypes. Immune infiltration and immune score analyses revealed that these six mutated genes were significantly associated with tumour immune microenvironment in LGG. The response of LGG with different characteristics to ICB was evaluated by TIDE algorithm. Finally, CIC gene was screened through both univariate and multivariate Cox regression analyses, and the nomogram model was established to determine the potential prognostic value of CIC in LGG. Our study provides comprehensive analysis of mutated genes in LGG, supporting modulation of mutated genes in the management of LGG.  相似文献   

20.
Long non‐coding RNAs (lncRNAs), which competitively bind miRNAs to regulate target mRNA expression in the competing endogenous RNAs (ceRNAs) network, have attracted increasing attention in breast cancer research. We aim to find more effective therapeutic targets and prognostic markers for breast cancer. LncRNA, mRNA and miRNA expression profiles of breast cancer were downloaded from TCGA database. We screened the top 5000 lncRNAs, top 5000 mRNAs and all miRNAs to perform weighted gene co‐expression network analysis. The correlation between modules and clinical information of breast cancer was identified by Pearson's correlation coefficient. Based on the most relevant modules, we constructed a ceRNA network of breast cancer. Additionally, the standard Kaplan‐Meier univariate curve analysis was adopted to identify the prognosis of lncRNAs. Ultimately, a total of 23 and 5 modules were generated in the lncRNAs/mRNAs and miRNAs co‐expression network, respectively. According to the Green module of lncRNAs/mRNAs and Blue module of miRNAs, our constructed ceRNA network consisted of 52 lncRNAs, 17miRNAs and 79 mRNAs. Through survival analysis, 5 lncRNAs (AL117190.1, COL4A2‐AS1, LINC00184, MEG3 and MIR22HG) were identified as crucial prognostic factors for patients with breast cancer. Taken together, we have identified five novel lncRNAs related to prognosis of breast cancer. Our study has contributed to the deeper understanding of the molecular mechanism of breast cancer and provided novel insights into the use of breast cancer drugs and prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号