首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactivation and expansion of myelin-reactive CD4+ T cells within the central nervous system (CNS) are considered to play a key role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). We demonstrated that accumulation of myelin-specific CD4+ T cells within the CNS and subsequent clinical disease development require autophagy related (ATG) protein-dependent phagocytosis in dendritic cells (DCs). Genetic ablation of this pathway impairs presentation of myelin-associated antigen following phagocytosis of injured, phosphatidylserine-exposing oligodendroglial cells. Thus, DCs use ATG-dependent phagocytosis for enhanced presentation of myelin antigen, thereby linking oligodendrocyte injury with antigen processing and T cell-pathogenicity during autoimmune CNS inflammation.  相似文献   

2.
Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model of multiple sclerosis, an immune-mediated demyelinating disorder of the central nervous system (CNS). We have previously shown that CNS-specific CD8+ T cells (CNS-CD8+) ameliorate EAE, at least in part through modulation of CNS-specific CD4+ T cell responses. In this study, we show that CNS-CD8+ also modulate the function of CD11c+ dendritic cells (DC), but not other APCs such as CD11b+ monocytes or B220+ B cells. DC from mice receiving either myelin oligodendrocyte glycoprotein-specific CD8+ (MOG-CD8+) or proteolipid protein-specific CD8+ (PLP-CD8+) T cells were rendered inefficient in priming T cell responses from naïve CD4+ T cells (OT-II) or supporting recall responses from CNS-specific CD4+ T cells. CNS-CD8+ did not alter DC subset distribution or MHC class II and CD86 expression, suggesting that DC maturation was not affected. However, the cytokine profile of DC from CNS-CD8+ recipients showed lower IL-12 and higher IL-10 production. These functions were not modulated in the absence of immunization with CD8-cognate antigen, suggesting an antigen-specific mechanism likely requiring CNS-CD8-DC interaction. Interestingly, blockade of IL-10 in vitro rescued CD4+ proliferation and in vivo expression of IL-10 was necessary for the suppression of EAE by MOG-CD8+. These studies demonstrate a complex interplay between CNS-specific CD8+ T cells, DC and pathogenic CD4+ T cells, with important implications for therapeutic interventions in this disease.  相似文献   

3.
We show that the in vivo generation of cytokine-producing CD4 T cells specific for a given major histocompatibility class-II (MHCII)-binding peptide of hen egg lysozyme (HEL) is facilitated when mice are immunized with splenic antigen presenting cells (APC) pulsed with this HEL peptide and another peptide that binds a different MHCII molecule. This enhanced generation of peptide-specific effector CD4 T cells requires that the same splenic APC be pulsed with both peptides. Pulsed B cells, but not pulsed dendritic cells (DCs), can mediate CD4 T cell cooperation, which can be blocked by disrupting OX40-OX40L (CD134-CD252) interactions. In addition, the generation of HEL peptide-specific CD4 T cell memory is greater when mice are primed with B cells pulsed with the two peptides than with B cells pulsed with the HEL- peptide alone. Based on our findings, we suggest CD4 T cell cooperation is important for vaccine design, underlies the phenomenon of “epitope-spreading” seen in autoimmunity, and that the efficacy of B cell-depletion in the treatment of human cell-mediated autoimmune disease is due to the abrogation of the interactions between autoimmune CD4 T cells that facilitates their activation.  相似文献   

4.

Background

In many neuroinflammatory diseases, dendritic cells (DCs) accumulate in several compartments of the central nervous system (CNS), including the cerebrospinal fluid (CSF). Myeloid DCs invading the inflamed CNS are thus thought to play a major role in the initiation and perpetuation of CNS-targeted autoimmune responses. We previously reported that, in normal rats, DCs injected intra-CSF migrated outside the CNS and reached the B-cell zone of cervical lymph nodes. However, there is yet no information on the migratory behavior of CSF-circulating DCs under neuroinflammatory conditions.

Methodology/Principal Findings

To address this issue, we performed in vivo transfer experiments in rats suffering from experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. EAE or control rats were injected intra-CSF with bone marrow-derived myeloid DCs labeled with the fluorescent marker carboxyfluorescein diacetate succinimidyl ester (CFSE). In parallel experiments, fluorescent microspheres were injected intra-CSF to EAE rats in order to track endogenous antigen-presenting cells (APCs). Animals were then sacrificed on day 1 or 8 post-injection and their brain and peripheral lymph nodes were assessed for the presence of microspheres+ APCs or CFSE+ DCs by immunohistology and/or FACS analysis. Data showed that in EAE rats, DCs injected intra-CSF substantially infiltrated several compartments of the inflamed CNS, including the periventricular demyelinating lesions. We also found that in EAE rats, as compared to controls, a larger number of intra-CSF injected DCs reached the cervical lymph nodes. This migratory behavior was accompanied by an accentuation of EAE clinical signs and an increased systemic antibody response against myelin oligodendrocyte glycoprotein, a major immunogenic myelin antigen.

Conclusions/Significance

Altogether, these results indicate that CSF-circulating DCs are able to both survey the inflamed brain and to reach the cervical lymph nodes. In EAE and maybe multiple sclerosis, CSF-circulating DCs may thus support the immune responses that develop within and outside the inflamed CNS.  相似文献   

5.

Background

The role of regulatory CD4 T cells (Treg) in immune-mediated liver disease is still under debate. It remains disputed whether Treg suppress T cell-mediated hepatitis in vivo and whether hepatic regulatory T cells are functional in patients with autoimmune hepatitis.

Methods

We used TF-OVA mice, which express ovalbumin in hepatocytes, to investigate the impact of Treg in a model of autoimmune hepatitis. Treg isolated from inflamed livers of TF-OVA mice were tested for their functionality in vitro. By employing double transgenic TF-OVAxDEREG (DEpletion of REGulatory T cells) mice we analyzed whether Treg-depletion aggravates autoimmune inflammation in the liver in vivo.

Results

CD25+Foxp3+ CD4 T cells accumulated in the liver in the course of CD8 T cell-mediated hepatitis. Treg isolated from inflamed livers were functional to suppress CD8 T-cell proliferation in vitro. Depletion of Treg in TF-OVAxDEREG mice dramatically amplified T cell-mediated hepatitis. Repeated administration of antigen-specific CD8 T cells led to a second wave of inflammation only after depletion of Treg.

Conclusion

Our data add to the evidence for an important role of Treg in autoimmune hepatitis and show that Treg reduce the severity of T-cell mediated hepatitis in vivo. They constitute a key immune cell population that actively maintains a tolerogenic milieu in the liver and protects the liver against repeated inflammatory challenges.  相似文献   

6.
Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4+ T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.  相似文献   

7.
Mycobacterium tuberculosis and M. bovis BCG infect APCs. In vitro, mycobacteria inhibit IFN-gamma-induced MHC-II expression by macrophages, but the effects of mycobacteria on lung APCs in vivo remain unclear. To assess MHC-II expression on APCs infected in vivo, mice were aerosol-infected with GFP-expressing BCG. At 28 d, ∼1% of lung APCs were GFP+ by flow cytometry and CFU data. Most GFP+ cells were CD11bhigh/CD11cneg-mid lung macrophages (58-68%) or CD11bhigh/CD11chigh DCs (28-31%). Lung APC MHC-II expression was higher in infected mice than naïve mice. Within infected lungs, however, MHC-II expression was lower in GFP+ cells than GFP− cells for both macrophages and DCs. MHC-II expression was also inhibited on purified lung macrophages and DCs that were infected with BCG in vitro. Thus, lung APCs that harbor mycobacteria in vivo have decreased MHC-II expression relative to uninfected APCs from the same lung, possibly contributing to evasion of T cell responses.  相似文献   

8.
The antigen processing compartments in antigen-presenting cells (APCs) have well known characteristics of multivesicular bodies (MVBs). However, the importance of MVB integrity to APC function remains unknown. In this study, we have altered the ultrastructure of the MVB by perturbing cholesterol content genetically through the use of a deletion of the lipid transporter Niemann-Pick type C1 (NPC1). Immunofluorescence and electron microscopic analyses reveal that the antigen processing compartments in NPC1−/− dendritic cells (DCs) have an abnormal ultrastructure in that the organelles are enlarged and the intraluminal vesicles are almost completely absent and those remaining are completely disorganized. MHC-II is restricted to the limiting membrane of these enlarged MVBs where it colocalizes with the peptide editor H2-DM. Curiously, proteolytic removal of the chaperone protein Invariant chain from MHC-II, degradation of internalized foreign antigens, and antigenic-peptide binding to nascent MHC-II are normal in NPC1−/− DCs. Antigen-pulsed NPC1−/− DCs are able to effectively activate antigen-specific CD4 T cells in vitro, and immunization of NPC1−/− mice reveals surprisingly normal CD4 T cell activation in vivo. Our data thus reveal that the localization of MHC-II on the intraluminal vesicles of multivesicular antigen processing compartments is not required for efficient antigen presentation by DCs.  相似文献   

9.
10.
The central role of T cells in the induction of immunological tolerance against i.v. Ags has been well documented. However, the role of dendritic cells (DCs), the most potent APCs, in this process is not clear. In the present study, we addressed this issue by examining the involvement of two different DC subsets, CD11c(+)CD11b(+) and CD11c(+)CD8(+) DCs, in the induction of i.v. tolerance. We found that mice injected i.v. with an autoantigen peptide of myelin oligodendrocyte glycoprotein (MOG) developed less severe experimental autoimmune encephalomyelitis (EAE) following immunization with MOG peptide but presented with more CD11c(+)CD11b(+) DCs in the CNS and spleen. Upon coculturing with T cells or LPS, these DCs exhibited immunoregulatory characteristics, including increased production of IL-10 and TGF-beta but reduced IL-12 and NO; they were also capable of inhibiting the proliferation of MOG-specific T cells and enhancing the generation of Th2 cells and CD4(+)CD25(+)Foxp3(+) regulatory T cells. Furthermore, these DCs significantly suppressed ongoing EAE upon adoptive transfer. These results indicate that CD11c(+)CD11b(+) DCs, which are abundant in the CNS of tolerized animals, play a crucial role in i.v. tolerance and EAE and may be a candidate cell population for immunotherapy of autoimmune diseases.  相似文献   

11.
Dendritic cells (DC) are key regulators of T cell immunity and tolerance. NKT cells are well-known enhancers of Th differentiation and regulatory T cell function. However, the nature of the DC directing T and NKT cell activation and polarization as well as the role of the respective CD1d Ags presented is still unclear. In this study, we show that peptide-specific CD4(+)IL-10(+) T cell-mediated full experimental autoimmune encephalomyelitis (EAE) protection by TNF-treated semimatured DCs was dependent on NKT cells recognizing an endogenous CD1d ligand. NKT cell activation by TNF-matured DCs induced high serum levels of IL-4 and IL-13 which are absent in NKT cell-deficient mice, whereas LPS plus anti-CD40-treated fully mature DCs induce serum IFN-gamma. In the absence of IL-4Ralpha chain signaling or NKT cells, no complete EAE protection was achieved by TNF-DCs, whereas transfer of NKT cells into Jalpha281(-/-) mice restored it. However, activation of NKT cells alone was not sufficient for EAE protection and early serum Th2 deviation. Simultaneous activation of NKT cells and CD4(+) T cells by the same DC was required for EAE protection. Blocking experiments demonstrated that NKT cells recognize an endogenous glycolipid presented on CD1d on the injected DC. Together, this indicates that concomitant and interdependent presentation of MHC II/self-peptide and CD1d/self-isoglobotrihexosylceramide to T and NKT cells by the same partially or fully matured DC determines protective and nonprotective immune responses in EAE.  相似文献   

12.
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial “Excitatory Amino Acid Transporters” (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a β-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in “Myelin Oligodendrocyte Glycoprotein” (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFγ and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a β-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis.  相似文献   

13.
Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.  相似文献   

14.
Invariant natural killer T (iNKT) cells are innate T cells with powerful immune regulatory functions that recognize glycolipid antigens presented by the CD1D protein. While iNKT cell-activating glycolipids are currently being explored for their efficacy to improve immunotherapy against infectious diseases and cancer, little is known about the mechanisms that control CD1D antigen presentation and iNKT cell activation in vivo. CD1D molecules survey endocytic pathways to bind lipid antigens in MHC class II-containing compartments (MIICs) before recycling to the plasma membrane. Autophagosomes intersect with MIICs and autophagy-related proteins are known to support antigen loading for increased CD4+ T cell immunity. Here, we report that mice with dendritic cell (DC)-specific deletion of the essential autophagy gene Atg5 showed better CD1D1-restricted glycolipid presentation in vivo. These effects led to enhanced iNKT cell cytokine production upon antigen recognition and lower bacterial loads during Sphingomonas paucimobilis infection. Enhanced iNKT cell activation was independent of receptor-mediated glycolipid uptake or costimulatory signals. Instead, loss of Atg5 in DCs impaired clathrin-dependent internalization of CD1D1 molecules via the adaptor protein complex 2 (AP2) and, thus, increased surface expression of stimulatory CD1D1-glycolipid complexes. These findings indicate that the autophagic machinery assists in the recruitment of AP2 to CD1D1 molecules resulting in attenuated iNKT cell activation, in contrast to the supporting role of macroautophagy in CD4+ T cell stimulation.  相似文献   

15.
16.
IL-12 was thought to be involved in the development of experimental autoimmune encephalomyelitis (EAE), a Th1 cell-mediated autoimmune disorder of the CNS. However, we have recently found that IL-12 responsiveness, via IL-12Rbeta2, is not required in the induction of EAE. To determine the role of IL-12Rbeta1, a key subunit for the responsiveness to both IL-12 and IL-23, in the development of autoimmune diseases, we studied EAE in mice deficient in this subunit of IL-12R. IL-12Rbeta1(-/-) mice are completely resistant to myelin oligodendrocyte glycoprotein (MOG)-induced EAE, with an autoantigen-specific Th2 response. To study the mechanism underlying this Th2 bias, we cocultured purified CD4(+) T cells and APCs of MOG-immunized mice. We demonstrate that IL-12Rbeta1(-/-) APCs drive CD4(+) T cells of both wild-type and IL-12Rbeta1(-/-) mice to an Ag-induced Th2 phenotype, whereas wild-type APCs drive these CD4(+) T cells toward a Th1 type. IL-12Rbeta1(-/-) CD4(+) T cells, in turn, appear to exert an immunoregulatory effect on the capacity of wild-type APCs to produce IFN-gamma and TNF-alpha. Furthermore, decreased levels of IL-12p40, p35, and IL-23p19 mRNA expression were found in IL-12Rbeta1(-/-) APCs, indicating an autocrine pathway of IL-12/IL-23 via IL-12Rbeta1. IL-18 production and IL-18Ralpha expression are also significantly decreased in IL-12Rbeta1(-/-) mice immunized with MOG. We conclude that in the absence of IL-12Rbeta1, APCs play a prominent regulatory role in the induction of autoantigen-specific Th2 cells.  相似文献   

17.
Invariant natural killer T (iNKT) cells are involved in various autoimmune diseases. Although iNKT cells are arthritogenic, transforming growth factor beta (TGFβ)-treated tolerogenic peritoneal macrophages (Tol-pMφ) from wild-type (WT) mice are more tolerogenic than those from CD1d knock-out iNKT cell-deficient mice in a collagen-induced arthritis (CIA) model. The underlying mechanism by which pMφ can act as tolerogenic antigen presenting cells (APCs) is currently unclear. To determine cellular mechanisms underlying CD1d-dependent tolerogenicity of pMφ, in vitro and in vivo characteristics of pMφ were investigated. Unlike dendritic cells or splenic Mφ, pMφ from CD1d+/− mice showed lower expression levels of costimulatory molecule CD86 and produced lower amounts of inflammatory cytokines upon lipopolysaccharide (LPS) stimulation compared to pMφ from CD1d-deficient mice. In a CIA model of CD1d-deficient mice, adoptively transferred pMφ from WT mice reduced the severity of arthritis. However, pMφ from CD1d-deficient mice were unable to reduce the severity of arthritis. Hence, the tolerogenicity of pMφ is a cell-intrinsic property that is probably confer-red by iNKT cells during pMφ development rather than by interactions of pMφ with iNKT cells during antigen presentation to cognate T cells.  相似文献   

18.
Chronic progression of two T cell-mediated central nervous system (CNS) demyelinating models of multiple sclerosis, relapsing EAE (R-EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is dependent on the activation of T cells to endogenous myelin epitopes (epitope spreading). Using transfer of carboxyfluorescein succinyl ester (CFSE)-labeled T-cell receptor (TCR)-transgenic T cells and mixed bone marrow chimeras, we show that activation of naive proteolipid protein (PLP)139-151-specific T cells in SJL mice undergoing PLP178-191-induced R-EAE or TMEV-IDD occurs directly in the CNS and not in the cervical lymph nodes or other peripheral lymphoid organs. Examination of the antigen-presentation capacity of antigen-presenting cell (APC) populations purified from the CNS of mice with PLP178-191-induced R-EAE shows that only F4/80-CD11c+CD45hi dendritic cells (DCs) efficiently present endogenous antigen to activate naive PLP139-151-specific T cells in vitro. In contrast, DCs as well as F4/80+CD45hi macrophages and F4/80+CD45lo microglia activate a PLP139-151-specific helper T cell line. The data suggest that naive T cells enter the inflamed CNS and are activated by local APCs, possibly DCs, to initiate epitope spreading.  相似文献   

19.
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against HIV. On the other hand, due to the susceptibility of DCs to HIV infection, virus replication is strongly enhanced in DC–T cell interaction via an immunological synapse formed during the antigen presentation process. When HIV-1 is isolated from individuals newly infected with the mixture of R5 and X4 variants, R5 is predominant, irrespective of the route of infection. Because the early massive HIV-1 replication occurs in activated T cells and such T-cell activation is induced by antigen presentation, we postulated that the selective expansion of R5 may largely occur at the level of DC–T cell interaction. Thus, the immunological synapse serves as an infectious synapse through which the virus can be disseminated in vivo. We used fluorescent recombinant X4 and R5 HIV-1 consisting of a common HIV-1 genome structure with distinct envelopes, which allowed us to discriminate the HIV-1 transmitted from DCs infected with the two virus mixtures to antigen-specific CD4+ T cells by flow cytometry. We clearly show that the selective expansion of R5 over X4 HIV-1 did occur, which was determined at an early entry step by the activation status of the CD4+ T cells receiving virus from DCs, but not by virus entry efficiency or productivity in DCs. Our results imply a promising strategy for the efficient control of HIV infection.  相似文献   

20.
CD4 T-cell help is required for the induction of efficient CD8 T-cells responses and the generation of memory cells. Lack of CD4 T-cell help may contribute to an exhausted CD8 phenotype and viral persistence. Little is known about priming of CD4 T-cells by liver-derived antigen. We used TF-OVA mice expressing ovalbumin in hepatocytes to investigate CD4 T-cell priming by liver-derived antigen and the impact of CD4 T-cell help on CD8 T-cell function. Naïve and effector CD4 T-cells specific for ovalbumin were transferred into TF-OVA mice alone or together with naïve ovalbumin-specific CD8 T-cells. T-cell activation and function were analyzed. CD4 T-cells ignored antigen presented by liver antigen-presenting cells (APCs) in vitro and in vivo but were primed in the liver-draining lymph node and the spleen. No priming occurred in the absence of bone-marrow derived APCs capable of presenting ovalbumin in vivo. CD4 T-cells primed in TF-OVA mice displayed defective Th1-effector function and caused no liver damage. CD4 T-cells were not required for the induction of hepatitis by CD8 T-cells. Th1-effector but not naïve CD4 T-cells augmented the severity of liver injury caused by CD8 T-cells. Our data demonstrate that CD4 T-cells fail to respond to liver-derived antigen presented by liver APCs and develop defective effector function after priming in lymph nodes and spleen. The lack of CD4 T-cell help may be responsible for insufficient CD8 T-cell function against hepatic antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号