首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A mouse monoclonal anti human filaggrin antibody was found to bind keratohyaline granules of normal epidermis as well as of premalignant and malignant lesions in formalin-fixed tissue sections. In addition, an unexpected binding of this antibody with cells containing glycogen and other PAS positive substances was found, which could be abolished by adsorption of the anti-filaggrin antibody with glycogen or pretreatment of the sections with diastase.  相似文献   

2.
Paraffin-embedded sections from paraformaldehyde-fixed rat brain were stained immunocytochemically for glycogen phosphorylase brain isozyme BB, using a monoclonal mouse antibody and the biotin-strept-avidin method, with either horseradish peroxidase or beta-galactosidase as marker enzymes. Two cell types showed strong glycogen phosphorylase-immunoreactivity: Astrocytes and ependymal cells. Most intensive staining was observed in the cerebellar cortex, the neocortex and the hippocampus. Astrocytes in the cerebellar white matter stained positively. The choroid plexus cells stained poorly or not at all. Neurons throughout the brain were negative, as well as oligodendrocytes and bundles of myelinated nerve fibers. These data are consistent with the immunocytochemical localization of glycogen phosphorylase in astroglia-rich primary cultures derived from rat brain.  相似文献   

3.
Catalytic activity and immunoreactivity of glycogen phosphorylase were studied in pre- and postnatal rat brain. The catalytic activity was assayed in brain homogenates; immunoreactivity was investigated by immunoblot analysis using a monoclonal anti-bovine brain glycogen phosphorylase antibody. The cellular localization and intensity of immunoreactivity were analysed on paraffin-embedded sections utilizing the same monoclonal antibody. The catalytic activity increased 10-fold from embryonic day 16 to adult; immunoreactivity became detectable on embryonic day 16 and increased in intensity as the enzyme activity rose to adult values. The first cellular elements to be stained immunohistochemically were ependymal cells lining the ventricles, ependymal cells of the choroid plexus, meningeal cells and a selected population of neurons in the brain stem. The immunoreactivity of plexus cells and meningeal cells was reduced or absent in the adult rat brain. The earliest appearance of glycogen phosphorylase immunoreactivity in astroglial cells was seen at postnatal day 9 in the hippocampus. The staining pattern of the adult brain was reached at day 22 post partum. The developmental changes in glycogen deposition and in glycogen phophorylase activity and immunoreactivity may indicate a variable physiological role of glycogen metabolism for different cell types in the pre- and postnatal periods.Dedicated to Professor Helmut Leonhardt on the occasion of his 75th birthday  相似文献   

4.
Summary Paraffin-embedded sections from paraformaldehyde-fixed rat brain were stained immunocytochemically for glycogen phosphorylase brain isozyme BB, using a monoclonal mouse antibody and the biotin-streptavidin method, with either horseradish peroxidase or -galactosidase as marker enzymes. Two cell types showed strong glycogen phosphorylase-immunoreactivity: Astrocytes and ependymal cells. Most intensive staining was observed in the cerebellar cortex, the neocortex and the hippocampus. Astrocytes in the cerebellar white matter stained positively. The choroid plexus cells stained poorly or not at all. Neurons throughout the brain were negative, as well as oligodendrocytes and bundles of myelinated nerve fibers. These data are consistent with the immunocytochemical localization of glycogen phosphorylase in astroglia-rich primary cultures derived from rat brain.  相似文献   

5.
The binding of rabbit anti-human IgG labeled with 125I, shellfish glycogen or ferritin to human IgG attached to the surface of rabbit RBC with chromic chloride was studied. Maximum binding was noted with 125I labeled antibody. Slightly but consistently less binding was found with shellfish glycogen labeled antibody. The binding of ferritin labeled antibody was strikingly reduced--usually one-third or less of that found with 125I labeled antibody alone. This suggests that under the conditions of these experiments, the attachment of large labels to antibody molecules results in reduced antibody binding to surface antigen. Steric hindrance is probably at least in part responsible for this reduced binding.  相似文献   

6.
Summary. The physiological function of brain glycogen and the role of phosphorylase kinase as a regulatory enzyme in the cascade of reactions associated with glycogenolysis in the brain have not been fully elucidated. As a first step toward elucidating such a function, we studied the localization of phosphorylase kinase in glial and neuronal primary cell cultures, and in adult rat brain slices, using a rabbit polyclonal antibody against skeletal muscle glycogen phosphorylase kinase. Immunocytochemical examination of rat astroglia-rich primary cultures revealed that a large number of cells were positive for glycogen phosphorylase kinase immunoreactivity. These cells were also positive for vimentin, a marker for immature glia, while they were negative for glial fibrillary acidic protein, a marker for mature astroglia, and for galactocerebroside, an oligodendroglial marker. Neurons in rat neuron-rich primary cultures did not show any kinase-positive staining. In paraformaldehyde-fixed adult rat brain sections, phosphorylase kinase immunoreactivity was detected in glial-like cells throughout the brain, with relatively high staining found in the cerebral cortex, the cerebellum, and the medulla oblongata. Phosphorylase kinase immunoreactivity could not be detected in neurons, with the exception of a group of large neurons in the brain stem, most likely belonging to the mesencephalic trigeminal nucleus. Phosphorylase kinase was also localized in the choroid plexus and to a lesser degree in the ependymal cells lining the ventricles. Phosphorylase kinase thus appears to have the same cellular distribution in nervous tissue as its substrates, i.e. glycogen phosphorylase and glycogen, which suggests that the physiological role of brain phosphorylase kinase is the mobilization of glycogen stores to fuel the increased metabolic demands of neurons and astrocytes.  相似文献   

7.
Synopsis A technique for the quantitation of glycogen in single fibres of human skeletal muscle is described. By using microphotometry the loss of glycogen from cryostat sections during a PAS-staining procedure was shown to be negligible. Further, it was found that nearly all the PAS-positive material (98.5%) inside a muscle fibre is glycogen. A significantly higher mean glycogen concentration (P<0.001) was found in type II fibres than in type I fibres in the resting quadriceps muscle of sedentary young males. The coefficient of variation for the glycogen concentration within each fibre type was found to be 17% and 15% for type I and type II respectively. The specificity of the PAS-staining technique for glycogen was confirmed by a statistically significant correlation (r=0.78,P<0.001) between the glycogen concentration measured biochemically and that calculated from microphotometry and area and thickness measurements. With the technique described, it seems possible to measure the glycogen concentration of single muscle fibres in serial sections and to calculate this in standard biochemical terms.  相似文献   

8.
Summary Thin sections of clover nodules were examined by electron microscopy. The emergence of the bacteria from the infection thread was found to occur by a process of phagocytosis. No evidence was found, using glutar-aldehyde-osmium as a fixative, that there is any connection between the membrane envelope and the endoplasmic reticulum.Electron dense granules, previously observed in clover nodule bacteria, were identified as glycogen granules. These glycogen granules accumulated in bacteria and bacteroids in some ineffective nodules.  相似文献   

9.
The subcellular distribution of enzymes related to carbohydrate metabolism was determined in sections of paraformaldehyde fixed and polyethylene glycol-1540-embedded rat liver and in cryostat sections. For this purpose, goat anti-rat phosphoenolpyruvate carboxykinase (PEPCK) serum and rabbit anti-rat glycogen phosphorylase (GP) serum were used as primary antibodies to localize the corresponding antigens. The primary antibodies were localized by 5 nm colloidal gold labeled secondary antibodies (either rabbit anti-goat IgG for PEPCK or goat anti-rabbit IgG for GP), and the gold particles were enhanced by silver staining using appropriate development reagents. The silver enhanced gold particles were detected by epipolarized light microscopy. PEPCK and GP immunoreactive molecules were found only in glycogen-containing areas of the cytosome of hepatocytes, and not in other cells. No immunocytochemical staining of hepatocytes was found when normal serum replaced the primary antibody in the procedures. Visio-Bond semithin (0.35–1.0 m) sections provided higher resolution for subcellular immunostaining of PEPCK and GP than cryosections of 10 m. Epipolarized light microscopy provided detection at high sensitivity of the gold-labeled antibody, and combined with transmitted light, allowed simultaneous visualization of the tissue morphology.  相似文献   

10.
In untreated 12- to 24-month-old rats, the enzyme histochemical pattern of 45 focal hepatic lesions was investigated in serial sections. In addition to previously characterized glycogen storage foci, a new type of enzymatically altered hepatic focus was found. The outstanding feature of this was an increased glycogen phosphorylase activity. The frequent appearance of glycogen phosphorylase hyperactive foci simultaneously exhibiting excessive glycogen storage suggests a close relationship to the well known glycogen storage foci representing an early stage in the sequence of cellular changes which lead to hepatic tumors.  相似文献   

11.
A method for preparing tissue sections for automatic image analysis of glycogen is described. Large semithin sections of epoxy embedded tissue fixed in glutaraldehyde-osmium were stained with Schiff reagent and acriflavine (fluorescent staining) after resin removal and periodic acid oxidation in ethanol. We found it essential to avoid tissue rehydration before final staining. The Schiff stain permits an assessment of the cellular volume of glycogen, and the acriflavine allows a fluorometric evaluation of glycogen density.  相似文献   

12.
The ultrastructural image of glycogen granules in the cytoplasm of rainbow trout phagocytes in sections stained by the conventional lead or uranyl-lead stains is highly dependent on fixation conditions, the granules being visible only when adequate fixation protocols are used. Morphometry of samples processed for the detection of peroxidase or esterase activities (to specifically label neutrophils and macrophages, respectively), and simultaneously stained for the specific detection of glycogen, showed that inflammatory peritoneal neutrophils were richer in glycogen granules than resting neutrophils. This increase in glycogen content occurs after the migration from the haematopoietic tissues and peripheral blood to the inflamed foci. Glycogen granules could not be found in resting peritoneal macrophages but were found in inflammatory macrophages. The macrophage granules occurred in smaller amounts than in neutrophils, and consisted of granules identical to those of neutrophils together with significantly smaller granules. No evidence for the utilization of glycogen by neutrophils phagocytosing bacteria within the peritoneal cavity was found.  相似文献   

13.
Simultaneous analyses of glycogen in sections with other subcellular constituents within the same section will provide detailed information on glycogen deposition and the processes involved. To date, staining protocols for quantitative glycogen analyses together with immunofluorescence in the same section are lacking. We aimed to: (1) optimise PAS staining for combination with immunofluorescence, (2) perform quantitative glycogen analyses in tissue sections, (3) evaluate the effect of section thickness on PAS-derived data and (4) examine if semiquantitative glycogen data were convertible to genuine glycogen values. Conventional PAS was successfully modified for combined use with immunofluorescence. Transmitted light microscopic examination of glycogen was successfully followed by semiquantification of glycogen using microdensitometry. Semiquantitative data correlated perfectly with glycogen content measured biochemically in the same sample (r2=0.993, P<0.001). Using a calibration curve (r2=0.945, P<0.001) derived from a custom-made external standard with incremental glycogen content, we converted the semiquantitative data to genuine glycogen values. The converted semiquantitative data were comparable with the glycogen values assessed biochemically (P=0.786). In addition we showed that for valid comparison of glycogen content between sections, thickness should remain constant. In conclusion, the novel protocol permits the combined use of PAS with immunofluorescence and shows valid conversion of data obtained by microdensitometry to genuine glycogen data.  相似文献   

14.
J P Denizot 《Histochemistry》1978,55(2):117-128
Glycogen synthetase (2.4.1.11) forms I (independent or active) and D (dependent or passive) as well as the enzymes active in the transformation of the pathways, protein kinase and phosphatase transferase, were studied in the sensory cells and glycogen rich epidermal cells of the weakly electric fish Gnathonemus petersii (Mormyridae). For light microscopy an indirect cytochemical method which differentiated between glycogen originally present and that produced during incubation in the presence of UDPG was used. This differentiation was obtained by iodine, PAS and alpha and beta amylases. Glycogen synthetase is present in the sensory cells in the I and D forms. The epidermal cells only contain the D form. Protein kinase (active I yields D) has only been found in the sensory cells but phosphatase transferase (active D yields I) has been found in both the epidermal cells and the sensory cells, but only within certain organs. Electron microscopy studies of glycogen synthetase I and D and protein kinase were restricted to the sensory cells only. As with the light microscope it was possible to differentiate between native glycogen and newly formed glycogen. This was done using ultrathin sections and staining with uranyl acetate, lead citrate or by the PATAg reaction. It was possible from these observations to locate precisely the positions of these enzymes. In fact, glycogen synthetase I and D are found both in the sensory cytoplasm and in the sensory cavity with the polysaccharide filaments. Protein kinase is also abundant in the sensory cytoplasm especially in the periphery of the cell near the microvillary border.  相似文献   

15.
Rat liver tissue was fixed in 2.5% glutaraldehyde buffered with cacodylic acid (pH 7.3) for 2 hr, washed twice in buffer, and postfixed in 2% osmium tetroxide at 4 C for 1 hr. The tissue then was dehydrated, infiltrated with and embedded in Epon by routine procedures. The ultrathin sections from this tissue, when stained with spectroscopic grade methanol saturated with uranyl acetate (SMUA) for 1 min followed by aqueous lead citrate (PbCi) (Reynolds 1963) for 5 min at room temperature, showed a uniform staining of all major cellular components except glycogen. The SMUA appeared to be specific for ribonuceloprotein granules, rendering them more prominent in the cytoplasm due to the lack of glycogen staining. The question of glycogen removal from the sections due to SMUA treatment was evulated using various extractions and staining methods. It appeared that SMUA pretreatment alters the subsequent binding ability of lead salts, resulting in lack of glycogen staining, although it does not remove the glycogen from the sections.  相似文献   

16.
Summary Distribution of glycogen particles in semithin and ultrathin sections of biopsy samples from human muscles subjected to either short- or long-term running were investigated using PAS and Periodic Acid-ThioSemiCarbazide-Silver Proteinate (PA-TSC-SP) staining methods. Glycogen particles were predominantly found immediately under the sarcolemma or aligned along the myofibrillar Iband. After long-term exhaustive exercise type-1 fibers with a few or no glycogen particles in the core of the fibers were frequently observed. The subsarcolemmal glycogen stores of these depleted type-1 fibers were about three times as large as after exhaustive short-time exercise. Another indication of utilization of subsarcolemmal glycogen stores during anaerobic exercise was that many particles displayed a pale, rudimentary shape. This observation suggests fragmental metabolization of glycogen. Thus, depending on type of exercise and type of fiber differential and sequential glycogen utilization patterns can be observed.  相似文献   

17.
Summary Various fixatives and fixation procedures were tested to evaluate their effects on the preservation of glycogen in sections of decalcified hard tissues. Lower jaws from 1-day-old rats were chosen for the observations. An aqueous solution of glutaraldehyde showed poor preservation of glycogen in the tissues even when employed in the perfusion procedure. Freeze-drying and formaldehyde vapour fixation preserved it much better, but glycogen was still lost to some extent. Freeze-substitution with acetone and various alcoholic fixatives gave a poor result, unless the tissues were fixed with cyanuric chloride. Cyanuric chloride in methanol containing N-methyl morphorine was the best fixative for the preservation of glycogen in the sections. A combination of freeze-substitution with the cyanuric chloride solution, decalcification with the Jenkins's fluid, and subsequent double-embedding in celloidin and paraffin was recommendable for an excellent glycogen preservation.  相似文献   

18.
Rat liver tissue was fixed in 2.5% glutaraldehyde buffered with cacodylic acid (pH 7.3) for 2 hr, washed twice in buffer, and postfixed in 2% osmium tetroxide at 4 C for 1 hr. The tissue then was dehydrated, infiltrated with and embedded in Epon by routine proocdures. The ultra thin sections from this tissue, when stained with spectroscopic grade methanol saturated with uranyl acetate (SMUA) for 1 min followed by aqueous lead citrate (PbCi) (Reynolds 1963) for 5 min at room temperature, showed a uniform staining of all major allular components ercept glycogen. The SMUA appeared to be specific for ribonucleoprotein granules, rendering them more prominent in the cytoplasm due to the lack of glycogen staining. The question of glycogen removal from the sections due to SMUA treatment was evaluated using various extractions and staining methods. It appeared that SMUA pretreatment alters the subsequent binding ability of lead salts, resulting in lack of glycogen staining, although it does not remove the glycogen from the sections.  相似文献   

19.
Summary The immunohistochemical demonstration of oestrogen receptor (OR) was performed on 32 randomly selected and routinely processed breast carcinomas after wet autoclave pretreatment of sections. The autoclave method was compared to the OR status found on frozen sections as well as to alternative pretreatment methods such as enzymatic predigestion and microwave irradiation. Using four different monoclonal antibody clones (H222, LH1, CC4-5, ID5.26), the OR status was evaluated for each of the various pretreatment methods applied. All cases with a high OR content on frozen sections (n = 11) also showed a high OR status on wet autoclave-pretreated paraffin tissues using antibody clones 1D5.26 and CC4-5; in cases with low OR content on frozen sections, no false-negative cases were recorded using only the antibody 1D5.26 neither after wet autoclave nor microwave pretreatment. In addition, with this antibody, OR was detectable after autoclave pretreatment in two cases which were considered to be OR-negative even on frozen sections. When the primary antibody was omitted, no false-positive cases were observed after wet autoclave pretreatment. Thus, in our hands, wet autoclave pretreatment, in combination with the antibody 1D5.26, offers a highly sensitive method for the immunohistochemical demonstration of OR in routinely formalin-fixed, paraffin-embedded sections of breast carcinomas.  相似文献   

20.
The nuclear morphology of preneoplastic and unaltered hepatocytes in diethylnitrosamine-treated rats was investigated. Two-micrometer-thick sections of methacrylate-embedded liver were scanned with a TV camera and evaluated in a computer using multivariate analysis methods. The preneoplastic cell populations (islands) were distinguished from unaltered hepatocytes by histochemical demonstration of glycogen storage in specimens from starved animals. After the hemalaun-stained liver sections were scanned randomly, the sections were stained for glycogen, and the previously registered cells were identified visually using a scanning stage for relocation. This objective identification of unaltered and preneoplastic hepatocytes formed the basis for the selection of a training set for feature evaluation and supervised classification. Image analysis for quantitative nuclear morphology was applied to the hemalaun-stained cells. The results showed that condensed chromatin was reduced and nuclear area was increased in the nuclei of glycogen-storing cells. Differences in the nuclear structure were also found. A multivariate analysis including seven features gave a correct classification result of about 82%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号