首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The role of salt bridges in chromatin protein Sso7d, from S. solfataricus has previously been shown to be crucial for its unusual high thermal stability. Experimental studies have shown that single site mutation of Sso7d (F31A) leads to a substantial decrease in the thermal stability of this protein due to distortion of the hydrophobic core. In the present study, we have performed a total of 0.2 μs long molecular dynamics (MD) simulations on F31A at room temperature, and at 360 K, close to the melting temperature of the wild type (WT) protein to investigate the role of hydrophobic core on protein stability. Sso7d-WT was shown to be stable at both 300 and 360 K; however, F31A undergoes denaturation at 360 K, consistent with experimental results. The structural and energetic properties obtained using the analysis of MD trajectories indicate that the single mutation results in high flexibility of the protein, and loosening of intramolecular interactions. Correlation between the dynamics of the salt bridges with the structural transitions and the unfolding pathway indicate the importance of both salt bridges and hydrophobic in effecting thermal stability of proteins in general.  相似文献   

2.
The role of salt bridges in chromatin protein Sso7d, from S. solfataricus has previously been shown to be crucial for its unusual high thermal stability. Experimental studies have shown that single site mutation of Sso7d (F31A) leads to a substantial decrease in the thermal stability of this protein due to distortion of the hydrophobic core. In the present study, we have performed a total of 0.2 s long molecular dynamics (MD) simulations on F31A at room temperature, and at 360 K, close to the melting temperature of the wild type (WT) protein to investigate the role of hydrophobic core on protein stability. Sso7d-WT was shown to be stable at both 300 and 360 K; however, F31A undergoes denaturation at 360 K, consistent with experimental results. The structural and energetic properties obtained using the analysis of MD trajectories indicate that the single mutation results in high flexibility of the protein, and loosening of intramolecular interactions. Correlation between the dynamics of the salt bridges with the structural transitions and the unfolding pathway indicate the importance of both salt bridges and hydrophobic in effecting thermal stability of proteins in general.  相似文献   

3.
Abstract

The role of salt bridges in chromatin protein Sso7d, from S. solfataricus has previously been shown to be crucial for its unusual high thermal stability. Experimental studies have shown that single site mutation of Sso7d (F31A) leads to a substantial decrease in the thermal stability of this protein due to distortion of the hydrophobic core. In the present study, we have performed a total of 0.2 μs long molecular dynamics (MD) simulations on F31A at room temperature, and at 360 K, close to the melting temperature of the wild type (WT) protein to investigate the role of hydrophobic core on protein stability. Sso7d-WT was shown to be stable at both 300 and 360 K; however, F31A undergoes denaturation at 360 K, consistent with experimental results. The structural and energetic properties obtained using the analysis of MD trajectories indicate that the single mutation results in high flexibility of the protein, and loosening of intramolecular interactions. Correlation between the dynamics of the salt bridges with the structural transitions and the unfolding pathway indicate the importance of both salt bridges and hydrophobic in effecting thermal stability of proteins in general.  相似文献   

4.
S K Holland  K Harlos    C C Blake 《The EMBO journal》1987,6(7):1875-1880
The proposed homology between the fibronectin type II domain and the Kringle domains of blood clotting and fibrinolytic proteins has been examined in three dimensions by substituting the type II sequence into the bovine prothrombin Kringle 1 tertiary structure, determined by X-ray crystallographical methods at 3.8 A. Structural substitution of aligned amino acids of the type II domains and the Kringle produces a compact chain fold and deletions and insertions in the type II sequence are accommodated within the modelled structure. This confirms the structural homology between the two domains and verifies the sequence alignment and common evolution of the type II and Kringle units. The two structures contain homologous hydrophobic cores, centered around the two disulphide bridges which link conserved beta-type strands. Gross differences between the two domains occur in exterior loops and potential functional sites in these regions of the type II structures as found in fibronectin, Factor XII and seminal fluid protein PDC-109 are proposed. We suggest that the domains evolved from a common ancestral protein comprising the hydrophobic core and disulphide arrangement which later diverged to bind different macromolecules through adaptation of the external loops.  相似文献   

5.
We explore the relative contributions of different structural elements to the stability of Abeta fibrils by molecular-dynamics simulations performed over a broad range of temperatures (298 K to 398 K). Our fibril structures are based on solid-state nuclear magnetic resonance experiments of Abeta(1-40) peptides, with sheets of parallel beta-strands connected by loops and stabilized by interior salt bridges. We consider models with different interpeptide interfaces, and different staggering of the N- and C-terminal beta-strands along the fibril axis. Multiple 10-20 ns molecular-dynamics simulations show that fibril segments with 12 peptides are stable at ambient temperature. The different models converge toward an interdigitated side-chain packing, and present water channels solvating the interior D23/K28 salt bridges. At elevated temperatures, we observe the early phases of fibril dissociation as a loss of order in the hydrophilic loops connecting the two beta-strands, and in the solvent-exposed N-terminal beta-sheets. As the most dramatic structural change, we observe collective sliding of the N- and C-terminal beta-sheets on top of each other. The interior C-terminal beta-sheets in the hydrophobic core remain largely intact, indicating that their formation and stability is crucial to the dissociation/elongation and stability of Abeta fibrils.  相似文献   

6.
Protein molecules require both flexibility and rigidity for functioning. The fast and accurate prediction of protein rigidity/flexibility is one of the important problems in protein science. We have determined flexible regions for four homologous pairs from thermophilic and mesophilic organisms by two methods: the fast FoldUnfold which uses amino acid sequence and the time consuming MDFirst which uses three-dimensional structures. We demonstrate that both methods allow determining flexible regions in protein structure. For three of the four thermophile–mesophile pairs of proteins, FoldUnfold predicts practically the same flexible regions which have been found by the MD/First method. As expected, molecular dynamics simulations show that thermophilic proteins are more rigid in comparison to their mesophilic homologues. Analysis of rigid clusters and their decomposition provides new insights into protein stability. It has been found that the local networks of salt bridges and hydrogen bonds in thermophiles render their structure more stable with respect to fluctuations of individual contacts. Such network includes salt bridge triads Agr-Glu-Lys and Arg-Glu-Arg, or salt bridges (such as Arg-Glu) connected with hydrogen bonds. This ionic network connects alpha helices and rigidifies the structure. Mesophiles can be characterized by stand alone salt bridges and hydrogen bonds or small ionic clusters. Such difference in the network of salt bridges results in different flexibility of homologous proteins. Combining both approaches allows characterizing structural features in atomic detail that determine the rigidity/flexibility of a protein structure. This article is a part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

7.
Plant LTP1 are small helical proteins stabilized by four disulfide bridges and are characterized by the presence of an internal cavity, in which various hydrophobic ligands can be inserted. Recently, we have determined the solution structure of the recombinant tobacco LTP1_1. Unexpectedly, despite a global fold very similar to the structures already known for cereal seed LTP1, its binding properties are different: Tobacco LTP1_1 is able to bind only one monoacylated lipid, whereas cereal LTP1 can bind either one or two. The 3D structure of tobacco LTP1_1 revealed the presence of a hydrophobic cluster, not observed on cereal LTP1 structures, which may hinder one of the two entrances of the cavity defined for wheat LTP1. To better understand the mechanism of lipid entrance for tobacco LTP1_1 and to define the regions of the protein monitoring the accessibility of the cavity, we have complemented our structural data by the study of the internal dynamics of tobacco LTP1_1, using (15)N magnetic relaxation rate data and MD simulations at room and high temperatures. This work allowed us to define two regions of the protein experiencing the largest motions. These two regions delineate a portal that opens up during the simulation constituting a unique entrance of the hydrophobic cavity, in contrast with wheat LTP1 where two routes were detected. The hydrophobic interactions resulting from a few point mutations are strong enough to completely block the second portal so that the accessibility of the cavity is restricted to one entrance, explaining why this particular LTP1 binds only one lipid molecule.  相似文献   

8.
Pendley SS  Yu YB  Cheatham TE 《Proteins》2009,74(3):612-629
The alpha-helical coiled-coil is one of the most common oligomerization motifs found in both native and engineered proteins. To better understand the stability and dynamics of the coiled-coil motifs, including those modified by fluorination, several fluorinated and nonfluorinated parallel dimeric coiled-coil protein structures were designed and modeled. We also attempt to investigate how changing the length and geometry of the important stabilizing salt bridges influences the coiled-coil protein structure. Molecular dynamics (MD) and free energy simulations with AMBER used a particle mesh Ewald treatment of the electrostatics in explicit TIP3P solvent with balanced force field treatments. Preliminary studies with legacy force fields (ff94, ff96, and ff99) show a profound instability of the coiled-coil structures in short MD simulation. Significantly, better behavior is evident with the more balanced ff99SB and ff03 protein force fields. Overall, the results suggest that the coiled-coil structures can readily accommodate the larger acidic arginine or S-2,7-diaminoheptanedoic acid mutants in the salt bridge, whereas substitution of the smaller L-ornithine residue leads to rapid disruption of the coiled-coil structure on the MD simulation time scale. This structural distortion of the secondary structure allows both the formation of large hydration pockets proximal to the charged groups and within the hydrophobic core. Moreover, the increased structural fluctuations and movement lead to a decrease in the water occupancy lifetimes in the hydration pockets. In contrast, analysis of the hydration in the stable dimeric coiled-coils shows high occupancy water sites along the backbone residues with no water occupancy in the hydrophobic core, although transitory water interactions with the salt bridge residues are evident. The simulations of the fluorinated coiled-coils suggest that in some cases fluorination electrostatically stabilizes the intermolecular coiled-coil salt bridges. Structural analyses also reveal different side chain rotamer preferences for leucine when compared with 5,5,5,5',5',5'-hexafluoroleucine mutants. These observed differences in the side chain rotamer populations suggest differential changes in the side chain conformational entropy upon coiled-coil formation when the protein is fluorinated. The free energy of hydration of the isolated 5,5,5,5',5',5'-hexafluoroleucine amino acid is calculated to be 1.1 kcal/mol less stable than leucine; this hydrophobic penalty in the monomer may provide a driving force for coiled-coil dimer formation. Estimation of the ellipticity at 222 nm from a series of snapshots from the MD simulations with DicroCalc shows distinct increases in the ellipticity when the coiled-coil is fluorinated, which suggests that the helicity in the folded coiled-coils is greater when fluorinated.  相似文献   

9.
Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G7) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of approximately 1.5 A from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.  相似文献   

10.
The structure and dynamics of the fatty acid binding cavity in I-FABP (rat intestinal fatty acid binding protein) were analyzed. In the crystal structure of apo I-FABP, the probe occupied cavity volume and surface are 539+/-8 A3 and 428 A2, respectively (1.4 A probe). A total of 31 residues contact the cavity with their side chains. The side-chain cavity surface is partitioned according to the residue type as follows: 36-39% hydrophobic, 21-25% hydrophilic, and 37-43% neutral or ambivalent. Thus, the cavity surface is neither like a typical protein interior core, nor is like a typical protein external surface. All hydrophilic residues that contact the cavity-with the exception of Asp74-are clustered on the one side of the cavity. The cavity appears to expand its hydrophobic surface upon fatty acid binding on the side opposite to this hydrophilic patch. In holo I-FABP the fatty acid chain interactions with the hydrophilic side chains are mediated by water molecules. Molecular dynamics (MD) simulation of fully solvated apo I-FABP showed global conformational changes of I-FABP, which resulted in a large, but seemingly transient, exposure of the cavity to the external solvent. The packing density of the side chains lining the cavity, studied by Voronoi volumes, showed the presence of two distinctive small hydrophobic cores. The MD simulation predicts significant structural perturbations of the cavity on the subnanosecond time scale, which are capable of facilitating exchange of I-FABP internal water.  相似文献   

11.
Human topoisomerase I (topo I) is an essential cellular enzyme that relaxes DNA supercoiling. The 6.3 kDa C-terminal domain of topo I contains the active site tyrosine (Tyr723) but lacks enzymatic activity by itself. Activity can be fully reconstituted when the C-terminal domain is associated with the 56 kDa core domain. Even though several crystal structures of topo I/DNA complexes are available, crystal structures of the free topo I protein or its individual domain fragments have been difficult to obtain. In this report we analyze the human topo I C-terminal domain structure using a variety of biophysical methods. Our results indicate that this fragment protein (topo6.3) appears to be in a molten globule state. It appears to have a native-like tertiary fold that contains a large population of alpha-helix secondary structure and extensive surface hydrophobic regions. Topo6.3 is known to be readily activated with the association of the topo I core domain, and the molten globule state of topo6.3 is likely to be an energy-favorable conformation for the free topo I C-terminal domain protein. The structural fluctuation and plasticity may represent an efficient mechanism in the topo I functional pathway, where the flexibility aids in the complementary association with the core domain and in the formation of a fully productive topo I complex.  相似文献   

12.
The structural and dynamical behavior of the 41-56 beta-hairpin from the protein G B1 domain (GB1) has been studied at different temperatures using molecular dynamics (MD) simulations in an aqueous environment. The purpose of these simulations is to establish the stability of this hairpin in view of its possible role as a nucleation site for protein folding. The conformation of the peptide in the crystallographic structure of the protein GB1 (native conformation) was lost in all simulations. The new equilibrium conformations are stable for several nanoseconds at 300K (>10 ns), 350 K (>6.5 ns), and even at 450 K (up to 2.5 ns). The new structures have very similar hairpin-like conformations with properties in agreement with available experimental nuclear Overhauser effect (NOE) data. The stability of the structure in the hydrophobic core region during the simulations is consistent with the experimental data and provides further evidence for the role played by hydrophobic interactions in hairpin structures. Essential dynamics analysis shows that the dynamics of the peptide at different temperatures spans basically the same essential subspace. The main equilibrium motions in this subspace involve large fluctuations of the residues in the turn and ends regions. Of the six interchain hydrogen bonds, the inner four remain stable during the simulations. The space spanned by the first two eigenvectors, as sampled at 450 K, includes almost all of the 47 different hairpin structures found in the database. Finally, analysis of the hydration of the 300 K average conformations shows that the hydration sites observed in the native conformation are still well hydrated in the equilibrium MD ensemble.  相似文献   

13.
The [Het-s] prion of the fungus Podospora anserina represents a good model system for studying the structure-function relationship in amyloid proteins because a high resolution solid-state NMR structure of the amyloid prion form of the HET-s prion forming domain (PFD) is available. The HET-s PFD adopts a specific β-solenoid fold with two rungs of β-strands delimiting a triangular hydrophobic core. A C-terminal loop folds back onto the rigid core region and forms a more dynamic semi-hydrophobic pocket extending the hydrophobic core. Herein, an alanine scanning mutagenesis of the HET-s PFD was conducted. Different structural elements identified in the prion fold such as the triangular hydrophobic core, the salt bridges, the asparagines ladders and the C-terminal loop were altered and the effect of these mutations on prion function, fibril structure and stability was assayed. Prion activity and structure were found to be very robust; only a few key mutations were able to corrupt structure and function. While some mutations strongly destabilize the fold, many substitutions in fact increase stability of the fold. This increase in structural stability did not influence prion formation propensity in vivo. However, if an Ala replacement did alter the structure of the core or did influence the shape of the denaturation curve, the corresponding variant showed a decreased prion efficacy. It is also the finding that in addition to the structural elements of the rigid core region, the aromatic residues in the C-terminal semi-hydrophobic pocket are critical for prion propagation. Mutations in the latter region either positively or negatively affected prion formation. We thus identify a region that modulates prion formation although it is not part of the rigid cross-β core, an observation that might be relevant to other amyloid models.  相似文献   

14.
Plant cells contain lipid-transfer proteins (LTPs) able to transfer phospholipids between membranes in vitro. Plant LTPs share in common structural and functional features. Recent structural studies carried out by NMR and X-ray crystallography on an LTP isolated from maize seeds have showed that this protein involves four helices packed against a C-terminal region and stabilized by four disulfide bridges. A most striking feature of this structure is the existence of an internal hydrophobic cavity running through the whole molecule and able to accomodate acyl chains. It was thus of interest to study the ability of maize LTP to bind hydrophobic ligands such as acyl chains or lysophosphatidylcholine and to determine the effect of this binding on phospholipid transfer. The binding abilities of maize LTP, presented in this paper, are discussed and compared to those of lipid-binding proteins from animal tissues.  相似文献   

15.
The structure of the free form HIV gp120, critical for therapeutic agent development, is unavailable due to its high flexibility. Previous thermodynamic data, structural analysis and simulation results have suggested a large conformational change in the core domain upon CD4 binding. The bridging sheet, which consists of four beta-strands with beta20/21 nestling against the inner/outer domains and beta2/3 facing outward, more exposed to the solvent, was proposed to be unfolded in the native state. In order to test this proposition and to characterize the native conformations, we performed potential mean force (PMF) molecular dynamics (MD) simulations on the CD4-bound crystal structure. We pushed the bridging sheet away from the inner and outer domain to explore the accessible conformational space for the bridging sheet. In addition, we performed conventional MD simulations on structures with the bridging sheet partially unfolded to investigate the stability of the association between the inner and outer domains. Based on the free energy profiles, we find that the whole bridging sheet is unlikely to unfold without other concurrent conformational changes. On the other hand, the partial bridging sheet, beta strands 2/3, can switch its conformation from the folded to the unfolded state. Furthermore, relaxation of conformation with partially unfolded bridging sheet through MD simulations leads to a conformation with beta strands 20/21 quickly re-anchoring against the inner and outer domains. Such a conformation, although lacking some of the hydrophobic interactions present in the CD4-bound structure, displayed high stability as further indicated by other restrained MD simulations. The relevance of this conformation to the free form structure and the pathway for conformational change from the free form to the CD4-bound structure is discussed in detail in light of the available unliganded SIV gp120 crystal structure.  相似文献   

16.
We have determined the solution structure of Cn2, a beta-toxin extracted from the venom of the New World scorpion Centruroides noxius Hoffmann. Cn2 belongs to the family of scorpion toxins that affect the sodium channel activity, and is very toxic to mammals (LD50=0.4 microg/20 g mouse mass). The three-dimensional structure was determined using 1H-1H two-dimensional NMR spectroscopy, torsion angle dynamics, and restrained energy minimization. The final set of 15 structures was calculated from 876 experimental distance constraints and 58 angle constraints. The structures have a global r. m.s.d. of 1.38 A for backbone atoms and 2.21 A for all heavy atoms. The overall fold is similar to that found in the other scorpion toxins acting on sodium channels. It is made of a triple-stranded antiparallel beta-sheet and an alpha-helix, and is stabilized by four disulfide bridges. A cis-proline residue at position 59 induces a kink of the polypeptide chain in the C-terminal region. The hydrophobic core of the protein is made up of residues L5, V6, L51, A55, and by the eight cysteine residues. A hydrophobic patch is defined by the aromatic residues Y4, Y40, Y42, W47 and by V57 on the side of the beta-sheet facing the solvent. A positively charged patch is formed by K8 and K63 on one edge of the molecule in the C-terminal region. Another positively charged spot is represented by the highly exposed K35. The structure of Cn2 is compared with those of other scorpion toxins acting on sodium channels, in particular Aah II and CsE-v3. This is the first structural report of an anti-mammal beta-scorpion toxin and it provides the necessary information for the design of recombinant mutants that can be used to probe structure-function relationships in scorpion toxins affecting sodium channel activity.  相似文献   

17.
Molecular dynamics (MD) simulations have been performed on quercetin 2,3 dioxygenase (2,3QD) to study the mobility and flexibility of the substrate cavity. 2,3QD is the only firmly established Cu-containing dioxygenase known so far. It catalyses the breakage of the O-heterocycle of flavonols. The substrates occupy a shallow and overall hydrophobic cavity proximal to the metal centre of the homo-dimeric enzyme. The linker connecting the C-terminal and N-terminal domains in the monomer is partly disordered in the crystal structure and part of it forms a flexible lid at the entrance of the substrate cavity. This loop has been tentatively assigned a role in the enzyme mechanism: it helps lock the substrate into place. The dynamics of this loop has been investigated by MD simulation. The initial coordinates were taken from the crystal structure of 2,3QD in the presence of the substrate kaempferol (KMP). After equilibration and simulation over 7.2ns the substrate was removed and another equilibration and simulation of 7.2ns was performed. The results show that the structures of the free enzyme as well as of the enzyme-substrate complex are stable in MD simulation. The linker shows strongly enhanced mobility in the loop region that is close to the entrance to the substrate cavity (residues 154-169). Movement of the loop takes place on a timescale of 5-10ns. To confirm the conclusions about the loop dynamics drawn from the 7.2ns simulation, the simulation was extended with another 8ns. When substrate binds into the cavity the loop orders remarkably, although mobility is retained by residues 155-158. Some regions of the loop (residues 154-160 and 164-176) move over a considerable distance and approach the substrate closely, reinforcing the idea that they lock the substrate in the substrate cavity. The enthalpic component of the interaction of the loop with the protein and the KMP appears to favour the locking of the substrate. Two water molecules were found immobilised in the cavity, one of which exhibited rotation on the picosecond timescale. When the substrate is removed, the empty cavity fills up with water within 200ps.  相似文献   

18.
Secretory phospholipases A2 (PLA2s) are small homologous proteins rich in disulphide bridges. These PLA2s have been classified into several groups based on the disulphide bond patterns found [Dennis, E. A. (1997) Trends Biochem. Sci. 22, 1-2]. To probe the effect of the various disulphide bond patterns on folding, stability and enzymatic properties, analogues of the secretory PLA2s were produced by protein engineering of porcine pancreatic PLA2. Refolding experiments indicate that small structural variations play an important role in the folding of newly made PLA2 analogues. Introduction of a C-terminal extension together with disulphide bridge 50-131 gives rise to an enzyme that displays full enzymatic activity having increased conformational stability. In contrast, introduction of a small insertion between positions 88 and 89 together with disulphide bridge 86-89 decreases the catalytic activity significantly, but does not change the stability. Both disulphide bridges 11-77 and 61-91 are important for the kinetic properties and stability of the enzyme. Disulphide bridge 11-77, but not 61-91, was found to be essential to resist tryptic breakdown of native porcine pancreatic PLA2.  相似文献   

19.
The positions of the disulphide bridges of the 1,4-beta-glucan cellobiohydrolase (CBH I) of the fungus Trichoderma reesei have been investigated. The results can be summarized as follows. (1) The enzyme contains 12 disulphide bridges and no free cysteine residues. (2) The location of six disulphide bridges have been determined experimentally. (3) The bonding patterns of the two disulphide bridges in the C-terminal region is suggested on the basis of internal homology. (4) The remaining four disulphide bridges are put into two groups, each containing four half-cystine residues where two are adjacent. (5) A repeating bonding pattern is observed along the peptide chain and a non-local disulphide bond with an unusually long separation distance links the N-terminal and the C-terminal region. (6) The disulphide-bonded CNBr peptides of a 1,4-beta-glucan glucanohydrolase (endoglucanase II) from T. reesei have been isolated and a disulphide bonding pattern is suggested on the basis of the sequence homology between the two enzymes.  相似文献   

20.
The complement inhibitors C4b-binding protein (C4BP) and factor H (FH) both consist of complement control protein (CCP) domains. Here we examined the secondary structure of both proteins by circular dichroism and Fourier-transform infrared technique at temperatures ranging from 30 degrees C-90 degrees C. We found that predominantly beta-sheet structure of both proteins was stable up to 70 degrees C, and that a reversible conformational change toward alpha-helix was apparent at temperatures ranging from 70 degrees C to 90 degrees C. The ability of both proteins to inhibit complement was not impaired after incubation at 95 degrees C, exposure to extreme pH conditions, and storage at room temperature for several months. Similar remarkable stability was previously observed for vaccinia virus control protein (VCP), which is also composed of CCP domains; it therefore seems to be a general property of CCP-containing proteins. A typical CCP domain has a hydrophobic core, which is wrapped in beta-sheets and stabilized by two disulphide bridges. How the CCP domains tolerate harsh conditions is unclear, but it could be due to a combination of high content of prolines, hydrophobic residues, and the presence of two disulphide bridges within each domain. These findings are of interest because CCP-containing complement inhibitors have been proposed as clinical agents to be used to control unwanted complement activation that contributes to many diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号