首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regional differences in the structure of the plasma membrane and acrosome membrane of squid spermatozoa were studied by freeze-fracture and thin section electron microscopy. In regions of close apposition the plasma membrane and acrosome membrane are adjoined to one another by regularly spaced linkages. These linkage sites, overlie a set of fibers located at the inner face of the acrosomal membrane. The acrosomal fibers terminate in a layer of granular material located at the base of the acrosome. Detergent treatment of sperm releases the fibers and granular material as an interconnected complex. Freeze-fracture replicas reveal a random arrangement of intramembranous particles in the plasma membrane over the sperm head and linear aggregates of intramembranous particles in the acrosomal membrane. Several regional differences in the structure of the flagellar plasma membrane are present. The thickness of the glycocalyx is progressively reduced distally along the flagellum. Freeze-fracture replicas show evenly spaced linear arrays of intramembranous particles which extend parallel t o the flagellar long axis. Examination of spermatozoa extracted to disrupt flagellar geometry suggest that the dense fiber-doublet microtubule complexes are attached to the plasma membrane. The possible functional role of these membrane differentiations and their relationship t o membrane structures in mammalian spermatozoa are discussed.  相似文献   

2.
We describe sperm ultrastructure and acrosome differentiation during spermiogenesis in Crassostrea gigas (Mollusca Bivalvia). The sperm cell is a uniflagellated cell of the primitive type. The head region contains a rounded or conical nucleus surmounted by small acrosome. This organelle consists of a membrane-bound acrosomal granule, the contents of which have a homogeneous density, except in the anterior region, which is positive for PTA. The acrosome also surrounds the perforatorium, which includes oriented fibrillar elements: this is the axial body. The middle piece contains four mitochondria encircling two perpendicular centrioles. The distal centriole is provided with a system of mechanical fixation to the plasma membrane, consisting of nine fibers in radial arrangement. The tail flagellum, about 50 m?m long, contains the usual microtubular axoneme. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Morphological changes in the interstitial cells were studied during their differentiation into spermatozoa. Development of the spermatogonium involves an increase in nuclear and nucleolar size, and the formation of a dense mass of cytoplasmic ribosomes. The mature spermatozoon has a relatively simple structure. The head consists of a bullet shaped, homogeneous nucleus, which lacks an acrosome but bears distal membrane specializations. The middle piece is composed of four large spherical mitochondria at the base of nucleus. A single flagellum projects from one of the two centrioles lodged between the mitochondria. The flagellum appears early during development in the primary spermatocyte. During spermiogenesis microtubules associated with the basal body flagellum complex appear to define the axis of chromatin condensation.  相似文献   

4.
锯缘青蟹精子发生的超微结构   总被引:13,自引:0,他引:13  
王艺磊  张子平 《动物学报》1997,43(3):249-254
采用透射电镜观察锯缘青蟹精子发生过程中超微结构的变化,结果表明:精原细胞椭圆形,染色质分布于核膜周围,胞质中具嵴少的线粒体,内质网小泡等。初级精母细胞染色质呈非浓缩状,胞质中具众 内质网小泡,特殊的膜系及晶格状结构。次级精母细胞核质间出现由内质小泡聚集成的腔。  相似文献   

5.
The formation of wall-like envelopes by isolated tomato-fruit protoplasts   总被引:1,自引:0,他引:1  
Summary Formation of a new cell wall around tomato protoplasts was confirmed by optical microscopy, electron microscopy and X-ray diffraction. This wall is composed of three layers; (a) an outer ring, which seems to be composed of diffuse, amorphous material, (b) an intermediate space, crossed by radial fibers, (c) a thicker, inner band composed of dense, highly consolidated material which may have sub-layers within it. Occasionally, cells are observed with only the dense consolidated layer about them. The origin of this wall and its component layers is not yet understood.National Research Council Post-doctoral Fellow, 1967–1969.  相似文献   

6.
Summary The present study examines spermiogenesis, and in particular the formation of the acrosome, in ten species of chitons belonging to four families. This study emphasizes the formation of the acrosome but brings to light several other structures that have received little or no mention in previous studies. The process of spermiogenesis is essentially similar in each species, although Chaetopleura exhibits some significant differences. In early spermiogenesis the Golgi body secretes numerous small pro-acrosomal vesicles that gradually migrate into the apical cytoplasm. The chromatin condenses from granules into fibres which become twisted within the nucleus. A small bundle of chromatin fibres projects from the main nuclear mass into the anterior filament; this coincides with the appearance of a developing manchette of microtubules around the nucleus that originates from the two centrioles. Radiating from the distal centriole is the centriolar satellite complex, which is attached to the plasma membrane by the annulus. The distal centriole produces the flagellum posteriorly and it exits eccentrically through a ring of folded membrane that houses the annulus. Extending from the annulus on one side of the flagellum, in all but one species, is a dense fibrous body that has not been previously reported. The proximal centriole lies perpendicular to the end of the distal centriole and is attached to it by fibro-granular material. Pro-acrosomal vesicles migrate anteriorly through the cytoplasm and move into the anterior filament to one side of the expanding nucleus. Eventually these vesicles migrate all the way to the tip of the sperm, where they fuse to form one of two granules in the acrosome. In mature sperm the nucleus is bullet-shaped with a long anterior filament and contains dense chromatin with occasional lacunae. The mitochondria vary in both number and position in the mature sperm of different species. Both centrioles are housed eccentrically in a posterior indentation of the nucleus, where the membranes are modified. The elongate flagellum tapers to a long filamentous end-piece that roughly corresponds to the anterior filament and may be important in sperm locomotion for hydrodynamic reasons. An acrosome is present in all ten species and stained positively for acid phosphatase in three species that were tested.  相似文献   

7.
The mammalian acrosome reaction is an exocytotic process that can be analyzed by the technique of freeze-fracture; only sperm cells capacitated in vitro or treated to elicit the acrosome reaction in vitro have been studied, and all pictures published are from material fixed before freezing. All the authors point out the appearance of particle-free areas in the plasma membrane of the acrosomal region during capacitation and before any fusion. This is interpreted as an increase in membrane fluidity as suggested by studies on membrane lipid composition in guinea-pig sperm. We have recently described the induced acrosome reaction in ram spermatozoa. Fusion starts at the limit of the anterior and equatorial segments and progresses forward in the anterior segment along ramified paths, resulting in a fenestration gradient of the acrosomal cap. Fusion propagation may be controlled by fluidity increase in the plasma membrane of the anterior segment, and it is probably inhibited in the equatorial segment by the ordered structure of the acrosomal membrane.  相似文献   

8.
The intact acrosome of the Mytilus edulis spermatozoon consists of a conical vesicle, the basal side of which is deeply invaginated so that the whole vesicle forms a sheath around a very slender axial rod, about 2.7 µ long, inserted in a tube passing through the nucleus. The annular base of the acrosomal vesical is filled with a homogeneous substance; the outer wall of the vesicle is lined with a somewhat irregular layer of a particulate substance interspersed with very fine tubular elements, and its lumen is nearly filled by a strand of material which extends from the inner tip of the invagination to the apex of the acrosome. The lumen of the invagination appears empty except for the rod and a delicate sleeve-like structure which surrounds it. The plasma membrane of the sperm cell lies in immediate contact with the acrosomal membrane over its whole outer surface. In its general organization, this molluscan acrosome shows a rather close homology with that of the annelid Hydroides.  相似文献   

9.
中国雨蛙精子形成的研究   总被引:4,自引:0,他引:4  
林丹军  尤永隆 《动物学报》2000,46(4):376-384,T005,T007
中国雨蛙的精子形成过程中,细胞核的浓缩经历了5个时期。从第1期进入第2期,染色质纤维增粗并聚集成卷曲的柱状结构。从第2期进入第3期,染色质纤维进一步增粗,细胞核逐渐伸直成柱状。进入第4期,染色质紧密聚集,纤维之间间隙很小。进入第5期,染色质纤维聚集成均匀的致密结构。伴随着染色质的浓缩,核膜数次更新,核内不参与浓缩的物质渐次从核中排出,核中出现一串核泡。顶体在染色质未浓缩之前(第1期)开始分化,由一  相似文献   

10.
The spermatozoon of the Musk shrew Suncus murinus displays unusual fine anatomical features. In the head, the equatorial segment of the acrosome is recessed within a waist in the sperm nucleus in a way that could afford some protection for this fusogenic region, perhaps during penetration of the egg vestments. The perinuclear material has distinctive inner and outer regions, the latter being arranged as a series of coxcomblike spikes. These structures in Suncus could serve to anchor its characteristically giant acrosome to the sperm nucleus. In the tail, small aggregations of electron dense material appear against some centriolar triplets and also, proximally, against some axonemal doublets. In the midpiece, prominent satellite material aggregates proximally over the inner border of the dense fibers. More distally, the material maintains a close relationship with and primarily lies between the corresponding axonemal doublets and dense fibers 5 and 6, the latter being positioned asymmetrically in relation to the remaining dense fibers.  相似文献   

11.
The human sperm protein SP-10 was previously defined as a "primary vaccine candidate" by a World Health Organization Taskforce on Contraceptive Vaccines. By one- and two-dimensional immunoblots, we show that SP-10, extracted from ejaculated human sperm, demonstrated a polymorphism of immunogenic peptides from 18 to 34 kDa, a pattern that was conserved from individual to individual and was not altered by reducing agents. The majority of the antigenic peptides possessed isoelectric points of approximately 4.9. Immunocytochemistry on testis sections indicated that SP-10 was localized to round spermatids and spermatozoa within the adluminal compartment of the seminiferous epithelium. Immunofluorescence showed that SP-10 was not associated with the surface of acrosome-intact, ejaculated sperm. Light and electron microscopic immunocytochemistry localized SP-10 throughout the acrosome, and electron microscopic evidence demonstrated a bilaminar array in association with the inner aspect of the outer acrosomal membrane and the outer aspect of the inner acrosomal membrane. After induction of the acrosome reaction with the ionophore A23187, SP-10 remained displayed on the sperm head in association with the inner acrosomal membrane and equatorial segment. The results indicate that the MHS-10 monoclonal antibody may be used as a marker of acrosome development in the human and as a probe to evaluate acrosome status. The results also support the hypothesis that inhibition of sperm-egg interaction by anti-SP-10 monoclonal antibody may occur as a result of antigen exposure following the acrosome reaction.  相似文献   

12.
T. Fujino  T. Itoh 《Protoplasma》1994,180(1-2):39-48
Summary The cell wall of a green alga,Oocystis apiculata, was visualized by electron microscopy after preparation of samples by rapid-freezing and deep-etching techniques. The extracellular spaces clearly showed a random network of dense fibrils of approximately 6.4 nm in diameter. The cell wall was composed of three distinct layers: an outer layer with a smooth appearance and many protuberances on its outermost surface; a middle layer with criss-crossed cellulose microfibrils of approximately 15–17 nm in diameter; and an inner layer with many pores between anastomosing fibers of 8–10 nm in diameter. Both the outer and the inner layer seemed to be composed of amorphous material. Cross-bridges of approximately 4.2 nm in diameter were visualized between adjacent microfibrils by the same techniques. The cross-bridges were easily distinguished from cellulose microfibrils by differences in their dimensions.  相似文献   

13.
锯缘青蟹精子超微结构的研究   总被引:20,自引:4,他引:20  
利用光镜和电镜观察了锯缘青蟹成熟精子的形态和超微结构。精子呈陀螺形,无鞭毛,在较宽的一端环生着10余辐射臂。精子由球状的顶体、核杯以及核衍生的辐射臂三部分组成。顶体包括顶体管和顶体囊,后者包绕在顶体管的中央管周围,并可分为头帽带,内层和外层区。顶体被杯状的核包裹,仅头帽露于精子表面。成熟的精子中,位于核杯和顶体管之间的核膜出现局部断续或消失,中心粒和一些胞器出现的核杯腔中。  相似文献   

14.
Zonadhesin is the only sperm protein known to bind in a species-specific manner to the zona pellucida. The zonadhesin precursor is a mosaic protein with a predicted transmembrane segment and large extracellular region composed of cell adhesion, mucin, and tandem von Willebrand D domains. Because the precursor possesses a predicted transmembrane segment and localizes to the anterior head, the mature protein was presumed to be a sperm surface zona pellucida-binding protein. In this study of hamster spermatozoa, we demonstrate that zonadhesin does not localize to the sperm surface but is instead a constituent of the acrosomal matrix. Immunoelectron microscopy revealed that distinct targeting pathways during spermiogenesis and sperm maturation in the epididymis result in trafficking of zonadhesin to the acrosomal matrix. In round spermatids, zonadhesin localized specifically to the acrosomal membrane, where it appeared to be evenly distributed between the outer and inner membrane domains. Subsequent redistribution of zonadhesin resulted in its elimination from the inner acrosomal membrane and restriction to the outer acrosomal membrane of the apical and principal segments and the contents of the posterior acrosome. During sperm maturation in the epididymis, zonadhesin dissociated from the outer acrosomal membrane and became incorporated into the forming acrosomal matrix. These data suggest an important structural role for zonadhesin in assembly of the acrosomal matrix and further support the view that the species specificity of zona pellucida adhesion is mediated by egg-binding proteins contained within the acrosome rather than on the periacrosomal plasma membrane.  相似文献   

15.
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup‐shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures‐organelles complex (SO‐complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO‐complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO‐complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The sperm of the blood fluke Schistosoma mansoni consist of a bulbous head 8 by 2 mum, with a rounded anterior tip and tapering posterior region, followed by a relatively short flagellum ca. 20 mum long. Electron microscopic observations revealed that these sperm are devoid of an acrosome, while a few undifferentiated mitochondria accumulate at the anterior part of the head. The nucleus appears dense, except for some electron-lucent patches. The flagellum starts at the basal body, posterior and slightly lateral to the nucleus, and the axial complex is of the 9 + 0 type. A layer of microtubules runs longitudinally, just beneath the plasmalemma, from the anterior part of the head to the initial part of the flagellum, where they overlap with the axial complex. It is suggested that this relatively rudimentary type of the S. mansoni sperm is probably related to the low activity required for fertilization.  相似文献   

17.
Sperm of the prawn Sicyonia ingentis were studied cytochemically and ultrastructurally. Striking cytological differences were noted between these natantian sperm and previously studied reptantian sperm. In general, the S. ingentis sperm are composed of a spherical main body that is partially encompassed by a morphologically diverse cap region, from which extends a single appendage or spike. The main body houses an uncondensed, Feulgen-positive nuclear region that is partially surrounded by a cytoplasmic band. A single layer of small, 600 Å, vesicles lines the periphery of the cytoplasmic band. Large membranous vesicles extend from the inner surface of the cytoplasmic band into the nuclear region. The nucleus is separated from the cap or acrosomal complex by a dense plate and a highly organized crystalline lattice, which is composed of geometric squares that are approximately 350 Å in dimension. The cap region also contains convoluted membrane pouches; a central granular core; spherical bodies; an electron-dense, saucer-shaped plate; and a large anterior granule. The convoluted membrane pouches and anterior granule are periodic acid-Schiff (PAS) positive. The anterior granule also demonstrates RNAase-stable red fluorescence with acridine orange staining. A spiralled spike, approximately 6 μm long, extends from the anterior end of the cap. The cap and spike are bound by a double membrane, which results from the fusion of the plasma membrane and the convoluted pouch membrane. The sperm's acrosome is thought to be composed of the two PAS-positive cap components and the spike.  相似文献   

18.
The notochord and notochordal sheath of 10 adult amphioxus were investigated ultrastructurally and histochemically. The notochord in amphioxus consists of parallel notochordal cells (plates) and each plate consists of parallel thicker and thinner fibrils and numerous profiles of smooth endoplasmic reticulum situated just beneath the cell membrane. Histochemical staining shows that the notochordal plates resemble neither the connective tissue notochordal sheath nor the typical muscular structure myotomes. The notochordal sheath has a complex three-layered organization with the outer, middle and inner layer The outer and middle layer are composed of collagen fibers of different thickness and course, that correspond to collagen type I and collagen type III in vertebrates, respectively, and the inner layer is amorphous, resembles basal lamina, and is closely attached to the notochord by hemidesmosome junctions. These results confirm the presence of collagen fibers and absence of elastic fibers in amphioxus.  相似文献   

19.
TAG fixation of normal and Ca2+ ionophore-treated rabbit polymorphonuclear leukocytes (PMN) has revealed membrane components not apparent with conventional glutaraldehyde fixation. These included a 30 Å external electron-dense coating on untreated cells. A somewhat thicker coat (40 Å) was observed in ionophore-treated, nondegranulating PMN. In ionophore-treated, degranulating PMN, a 65 Å cell membrane coat was observed. A similar coat was observed on the inner side of the membrane of some azurophil-type granules, but the electron density and thickness were not so pronounced. Cytoplasmic granules were often closely apposed and often protruded outward at the plasma membrane. Extracellular lamellae, sometimes stacked apposed to the plasma membrane, possibly represent remnants of intense granule extrusion. Sequential degranulation of the respective granules was not apparent.  相似文献   

20.
日本鳗鲡精卵的超微结构以及受精过程观察   总被引:1,自引:0,他引:1  
通过扫描电镜和透射电镜对经人工催产获得的日本鳗鲡(Anguilla japonica)精子、卵膜的超微结构以及受精过程进行了观察。实验观察到,除一般硬骨鱼类的精子特性外,日本鳗鲡精子有其独特的结构。精子头部为不规则的梨形,有背腹面之分。一个巨大的球形线粒体位于头部顶端。精子中段向后伸出一支根,支根位于袖套腔外精子的背侧,前端向精子头部线粒体方向延伸,支根的微管结构为"8+2"结构,并在精子入卵过程中起到切断鞭毛的作用。精子的尾部由鞭毛和鞭毛末端的结组成。鞭毛横切面呈圆形,无侧鳍,鞭毛微管结构为"9+0"结构。受精卵的整个表面密布着无规律延伸的脊、脊包围形成的窝和窝中的孔所组成的脊孔复合体,但无典型特征的受精孔。受精卵超薄切片观察发现,日本鳗鲡卵膜分为外层壳膜和内层卵黄膜。壳膜与卵黄膜间为卵周隙。壳膜只观察到放射带,未见透明带。放射带可分为三个亚层:最外层为脊孔复合体的脊,中间层为皱纹层,最内层为致密的平滑层。脊孔复合体的孔横穿整个放射带,在放射带内层形成一个乳突状结构。日本鳗鲡的卵膜不仅具有保护卵子的作用,而且还参与了受精。实验还通过扫描电镜观察了日本鳗鲡精子的入卵过程。观察结果认为:日本鳗鲡精子入卵过程可分为卵膜对精子的吸引、精子对卵膜的锚定、精核的进入和孔封闭等4个阶段。但由于研究只观察到受精过程中日本鳗鲡精子和卵膜的形态变化,因此对精子穿过卵膜的方式和特征等尚需做进一步的研究。整个受精过程为1min30s左右。此外,研究还探讨了日本鳗鲡精子结构的特殊性和受精过程的特殊性,为进一步突破日本鳗鲡人工育苗技术提供了理论依据。    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号