首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Velocity of electrical conduction in cardiac tissue is a function of mechanical strain. Although strain-modulated velocity is a well established finding in experimental cardiology, its underlying mechanisms are not well understood. In this work, we summarized potential factors contributing to strain–velocity relationships and reviewed related experimental and computational studies. We presented results from our experimental studies on rabbit papillary muscle, which supported a biphasic relationship of strain and velocity under uni-axial straining conditions. In the low strain range, the strain–velocity relationship was positive. Conduction velocity peaked with 0.59 m/s at 100% strain corresponding to maximal force development. In the high strain range, the relationship was negative. Conduction was reversibly blocked at 118±1.8% strain. Reversible block occurred also in the presence of streptomycin. Furthermore, our studies revealed a moderate hysteresis of conduction velocity, which was reduced by streptomycin. We reconstructed several features of the strain–velocity relationship in a computational study with a myocyte strand. The modeling included strain-modulation of intracellular conductivity and stretch-activated cation non-selective ion channels. The computational study supported our hypotheses, that the positive strain–velocity relationship at low strain is caused by strain-modulation of intracellular conductivity and the negative relationship at high strain results from activity of stretch-activated channels. Conduction block was not reconstructed in our computational studies. We concluded this work by sketching a hypothesis for strain-modulation of conduction and conduction block in papillary muscle. We suggest that this hypothesis can also explain uni-axially measured strain–conduction velocity relationships in other types of cardiac tissue, but apparently necessitates adjustments to reconstruct pressure or volume related changes of velocity in atria and ventricles.  相似文献   

2.
It is often assumed that pH(i) is spatially uniform within cells. A double-barreled microperfusion system was used to apply solutions of weak acid (acetic acid, CO(2)) or base (ammonia) to localized regions of an isolated ventricular myocyte (guinea pig). A stable, longitudinal pH(i) gradient (up to 1 pH(i) unit) was observed (using confocal imaging of SNARF-1 fluorescence). Changing the fractional exposure of the cell to weak acid/base altered the gradient, as did changing the concentration and type of weak acid/base applied. A diffusion-reaction computational model accurately simulated this behavior of pH(i). The model assumes that H(i)(+) movement occurs via diffusive shuttling on mobile buffers, with little free H(+) diffusion. The average diffusion constant for mobile buffer was estimated as 33 x 10(-7) cm(2)/s, consistent with an apparent H(i)(+) diffusion coefficient, D(H)(app), of 14.4 x 10(-7) cm(2)/s (at pH(i) 7.07), a value two orders of magnitude lower than for H(+) ions in water but similar to that estimated recently from local acid injection via a cell-attached glass micropipette. We conclude that, because H(i)(+) mobility is so low, an extracellular concentration gradient of permeant weak acid readily induces pH(i) nonuniformity. Similar concentration gradients for weak acid (e.g., CO(2)) occur across border zones during regional myocardial ischemia, raising the possibility of steep pH(i) gradients within the heart under some pathophysiological conditions.  相似文献   

3.
Immunocytochemical studies of spectrin in hamster cardiac tissue   总被引:4,自引:0,他引:4  
The spectrins are a family of cytoskeletal-membrane proteins that have a wide tissue distribution. In the present study, we employed polyclonal antibodies made against mammalian and avian erythroid spectrins as well as mammalian brain spectrin to assess their presence and distributions in the mammalian heart. Western blot analyses revealed that all three antibodies were specific for a 240,000 molecular weight alpha-spectrin subunit found in hamster erythrocyte ghost homogenates, whole hamster heart, and isolated hamster cardiac myofibril homogenates. Spectrin staining was absent from the Triton X-100-extracted supernatant fraction of myofibril preparations, suggesting that the protein is linked to the myofibril precipitate after exposure to the detergent. Frozen, unfixed, 2-microns-thick; sections of adult. Syrian golden hamster cardiac tissue exhibited strong immunofluorescent staining of intercalated discs and Z-bands using all three antibodies. In addition, the mammalian erythroid spectrin antibodies showed staining of the sarcolemma, and in cross section, revealed a delicate internal network of staining that appears to surround individual myofibrils. This may be T-tubule-associated staining. Myofibrils isolated from cardiac myocytes using Triton X-100 show positive Z-band staining using all three antibodies. Double staining with Texas Red-labeled monoclonal desmin and FITC-labeled polyclonal spectrin antibodies revealed that both stained the myofibrillar Z-line regions. These results demonstrate that spectrin is closely associated with the membranes, myofibrils, and intermediate filaments in the mammalian heart.  相似文献   

4.
Experimental and computational studies of the G[UUCG]C RNA tetraloop   总被引:7,自引:0,他引:7  
In prokaryotic ribosomal RNAs, most UUCG tetraloops are closed by a C-G base-pair. However, this preference is greatly reduced in eukaryotic rRNA species where many UUCG tetraloops are closed by G-C base-pairs. Here, biophysical properties of the C[UUCG]G and G[UUCG]C tetraloops are compared, using experimental and computational methods. Thermal denaturation experiments are used to derive thermodynamic parameters for the wild-type G[UUCG]C tetraloop and variants containing single deoxy substitutions in the loop. A comparison with analogous experiments on the C[UUCG]G motif shows that the two RNA species exhibit similar patterns in response to the substitutions, suggesting that their loop structures are similar. This conclusion is supported by NMR data that suggest that the essential UUCG loop structure is maintained in both tetraloops. However, NMR results show that the G[UUCG]C loop structure is disrupted prior to melting of the stem; this behavior is in contrast to the two-state behavior of the C[UUCG]G molecule. Stochastic dynamics simulations using the GB/SA continuum solvation model, run as a function of temperature, show rare conformational transitions in several G[UUCG]C simulations. These results lead to the conclusion that substitution of a G-C for a C-G closing base-pair increases the intrinsic flexibility of the UUCG loop.  相似文献   

5.
In the present research, the binding properties of diazinon (DZN), as an organophosphorus herbicide, to human serum albumin (HSA) were investigated using combination of spectroscopic, electrochemistry, and molecular modeling techniques. Changes in the UV–Vis and FT-IR spectra were observed upon ligand binding along with a significant degree of tryptophan fluorescence quenching on complex formation. The obtained results from spectroscopic and electrochemistry experiments along with the computational studies suggest that DZN binds to residues located in subdomains IIA of HSA with binding constant about 1410.9 M?1 at 300 K. From the thermodynamic parameters calculated according to the van’t Hoff equation, the enthalpy change ΔH° and entropy change ΔS° were found to be ?16.695 and 0.116 KJ/mol K, respectively. The primary binding pattern is determined by hydrophobic interaction and hydrogen binding occurring in so-called site I of HSA. DZN could slightly alter the secondary structure of HSA. All of experimental results are supported by computational techniques such as docking and molecular dynamics simulation using a HSA crystal model.  相似文献   

6.

Background  

Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood.  相似文献   

7.
Understanding the mechanism of saturated fatty acid-induced hepatocyte toxicity may provide insight into cures for diseases such as obesity-associated cirrhosis. Trehalose, a nonreducing disaccharide shown to protect proteins and cellular membranes from inactivation or denaturation caused by different stress conditions, also protects hepatocytes from palmitate-induced toxicity. Our results suggest that trehalose serves as a free radical scavenger and alleviates damage from hydrogen peroxide secreted by the compromised cells. We also observe that trehalose protects HepG2 cells by interacting with the plasma membrane to counteract the changes in membrane fluidity induced by palmitate. The experimental results are supported by molecular dynamics simulations of model cell membranes that closely reflect the experimental conditions. Simulations were performed to understand the specific interactions between lipid bilayers, palmitate, and trehalose. The simulations results reveal the early stages of how palmitate induces biophysical changes to the cellular membrane and the role of trehalose in protecting the membrane structure.  相似文献   

8.
Novel analytic methods are required to assimilate the large volumes of structural and bioassay data generated by combinatorial chemistry and high-throughput screening programmes in the pharmaceutical and agrochemical industries. Recent work in visualisation and data mining has been used to develop structure--activity relationships from such chemical-biological datasets.  相似文献   

9.
As the molecular representation of the genetic code, tRNA plays a central role in the translational machinery where it interacts with several proteins and other RNAs during the course of protein synthesis. These interactions exploit the dynamic flexibility of tRNA. In this minireview, we discuss the effects of modified bases, ions, and proteins on tRNA structure and dynamics and the challenges of observing its motions over the cycle of translation.  相似文献   

10.
In many cell types, specific and robust signalling relies on a high level of spatiotemporal organization of Ca(2+) dynamics. In response to external stimulation, Ca(2+) signals ranging from a small increase of a few tens of nanomolar concentrations at the mouth of an inositol 1, 4, 5-trisphosphate receptor to the periodic propagation of waves invading an organ or a tissue, can be observed. Here, we review our combined experimental and computational approach of Ca(2+) dynamics, which has been mainly carried out on liver hepatocytes. We focus in particular on the understanding of the relationship between elementary Ca(2+) increases, Ca(2+) oscillations and intra- or intercellular Ca(2+) waves. The physiological impact of such signalling on liver function is also discussed.  相似文献   

11.
A study has been made of the experimental errors inherent in investigations of intermediary metabolism in a rat liver preparation, using C14-labeled substrates, chromatography, and radioautography as analytical tools. Assessed on the basis of absolute amount of C14 incorporated into each metabolic product, the variation between experiments using samples of tissue from different animals was considerably greater than that using several samples of tissue from one animal. However, if the C14 incorporated into each metabolite was expressed as a percentage of the total C14 incorporated into all the metabolites, the variation between replicate samples of tissue from one animal was approximately the same as that using tissue from several animals. In both cases the experimental variation was such that, unless the effect of an alteration in the environment resulted in a change in the amount of C14 in any particular compound of at least 80–85%, it could not be regarded as significant. This applied only to compounds containing more than 2% of the total incorporated C14; substances containing less C14 showed an even greater variation. The main sources of variation were probably slight uncontrolled differences in the incubation conditions, together with inaccuracies in the determinations of radioactivity in those compounds containing very small amounts of the radioisotope.  相似文献   

12.
13.
Structure-function relationships in cardiac troponin T   总被引:3,自引:0,他引:3  
Regions of rabbit and bovine cardiac troponin T that are involved in binding tropomyosin, troponin C and troponin I have been identified. Two sites of contact for tropomyosin have been located, situated between residues 92-178 and 180-284 of troponin T. A cardiac-specific binding site for troponin I has been identified between residues 1-68 of cardiac troponin T, within a region of the protein that has previously been shown to be encoded by a series of exons that are expressed in a tissue-specific and developmentally regulated manner. The binding site for troponin C is located between residues 180-284 of cardiac troponin T. When isolated from fresh bovine hearts, cardiac troponin T contained 0.21 +/- 0.11 mol phosphate per mol; incubation with phosphorylase kinase increased the phosphate content to approx. 1 mol phosphate per mol. One site of phosphorylation was identified as serine-1; a second site of phosphorylation was located within peptide CB3 (residues 93-178) and has been tentatively identified as serine-176. Addition of troponin C to cardiac troponin T does not inhibit the phosphorylation of this latter protein that is catalysed by phosphorylase b kinase.  相似文献   

14.
Two genetic experimental approaches, de novo expression of parvalbumin (Parv) and overexpression of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), have been shown to increase relaxation rates in myocardial tissue. However, the relative effect of Parv and SERCA2a on systolic function and on beta-adrenergic responsiveness at varied pacing rates is unknown. We used gene transfer in isolated rat adult cardiac myocytes to gain a fuller understanding of Parv/SERCA2a function. As demonstrated previously, when Parv is expressed in elevated concentration (>0.1 mM), the transduced myocytes showed a reduction in sarcomere-shortening amplitude: 129 +/- 17, 81 +/- 8, and 149 +/- 14 nm for control, Parv, and SERCA2a, respectively. At physiological temperature, shortening amplitude responses of Parv and SERCA2a myocytes to the beta-adrenergic agonist isoproterenol (Iso) were not statistically different from that of control myocytes. However, in SERCA2a myocytes, in which baseline was slightly elevated and the Iso-stimulated value was slightly lower, the increase in shortening was slightly less than in Parv or control myocytes: 108 +/- 14, 169 +/- 39, and 34 +/- 12% for control, Parv, and SERCA2a, respectively. In another test set, Parv myocytes had the strongest early postrest potentiation among all groups studied (rest time = 2-10 s), and SERCA2a myocytes were the least sensitive to variations in stimulation rhythm. To replicate the deficient Ca2+ removal observed in heart failure, we used 150 nM thapsigargin. Under these conditions, control myocytes exhibited slowed relaxation, whereas Parv myocytes retained their rapid kinetics, showing that Parv is still able to control relaxation, even when SERCA2a function is impaired.  相似文献   

15.
A postprandial increase in ammonia nitrogen excretion and oxygen consumption rates was observed in juvenile pike fed a natural diet or an artificial dry diet. Specific growth rate of natural diet fed pike (2.4%) was lower than that of pike fed the artificial diet (3.1%). Fifty per cent of ingesta was evacuated within 5–6 h in pike of 25 mg body weight and 9–10 h in those weighing 150mg. Daily nitrogen excretion rates were related to body weight. Respiratory quotient and energy retention efficiency were affected by the nature of the diet ingested by pike. Parameters of the energy balance (losses, retention, increment due to feeding) were related to energy intake.  相似文献   

16.
17.
DNA-binding properties of an antiviral drug, valganciclovir (valcyte) was studied by using emission, absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, and computational studies. The drug bound to calf thymus DNA (ct-DNA) in a groove-binding mode. The calculated binding constant of UV-vis, Ka, is comparable to groove-binding drugs. Competitive fluorimetric studies with Hoechst 33258 showed that valcyte could displace the DNA-bound Hoechst 33258. The drug could not displace intercalated methylene blue from DNA double helix. Furthermore, the induced detectable changes in the CD spectrum of ct-DNA as well as changes in its viscosity confirm the groove-binding mode. In addition, an integrated molecular docking was employed to further investigate the binding interactions between valcyte and calf thymus DNA.  相似文献   

18.
K Prazdny 《Spatial Vision》1986,1(3):231-242
Random-dot Moire dot patterns epitomize the local/global gap, the problem of perceiving global structures when only physical local information is available to the perceptual system. At present, no single theory appears to be able to account for all the phenomena these physically simple patterns generate.  相似文献   

19.
There is substantial experimental evidence from studies using both intact tissue and isolated single cells to support the existence of different cell types within the ventricular wall of the heart, each possessing different electrical properties. However other studies have failed to find these differences, and instead support the idea that electrical coupling in vivo between regions with different cell types smoothes out differences in action potential shape and duration. In this study we have used a computational model of electrical activation in heterogenous 2D and 3D cardiac tissue to investigate the propagation of both normal beats and arrhythmias. We used the Luo–Rudy dynamic model for guinea pig ventricular cells, with simplified Ca2+ handling and transmural heterogeneity in IKs and Ito. With normal cell-to-cell coupling, a layer of M cells was not necessary for the formation of an upright T wave in the simulated electrocardiogram, and the amplitude and configuration of the T wave was not greatly affected by the thickness and configuration of the M cell layer. Transmural gradients in repolarisation pushed re-entrant waves with an intramural filament towards either the base or the apex of the ventricles, and caused transient break up of re-entry with a transmural filament.  相似文献   

20.
Computational techniques and software for the analysis of problems in mechanics have naturally moved from their origins in the traditional engineering disciplines to the study of cell, tissue and organ biomechanics. Increasingly complex models have been developed to describe and predict the mechanical behavior of such biological systems. While the availability of advanced computational tools has led to exciting research advances in the field, the utility of these models is often the subject of criticism due to inadequate model verification and validation (V&V). The objective of this review is to present the concepts of verification, validation and sensitivity studies with regard to the construction, analysis and interpretation of models in computational biomechanics. Specific examples from the field are discussed. It is hoped that this review will serve as a guide to the use of V&V principles in the field of computational biomechanics, thereby improving the peer acceptance of studies that use computational modeling techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号