首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cop operon is a key element of copper homeostasis in Enterococcus hirae. It encodes two copper ATPases, CopA and CopB, the CopY repressor, and the CopZ metallochaperone. The cop operon is induced by copper, which allows uncompromised growth in up to 5 mM ambient copper. Copper uptake appears to be accomplished by the CopA ATPase, a member of the heavy metal CPx-type ATPases and closely related to the human Menkes and Wilson ATPases. The related CopB ATPase extrudes copper when it reaches toxic levels. Intracellular copper routing is accomplished by the CopZ copper chaperone. Using surface plasmon resonance analysis, it was demonstrated that CopZ interacts with the CopA ATPase where it probably becomes copper loaded. CopZ in turn can donate copper to the copper responsive repressor CopY, thereby releasing it from DNA. In high copper, CopZ is proteolyzed. Cell extracts were found to contain a copper activated proteolytic activity that degrades CopZ in vitro. This post-translational control of CopZ expression presumably serves to avoid the accumulation of detrimental Cu-CopZ levels.  相似文献   

2.
P(IB)-type ATPases transport heavy metals (Cu(2+), Cu(+), Ag(+), Zn(2+), Cd(2+), Co(2+)) across biomembranes, playing a key role in homeostasis and in the mechanisms of biotolerance of these metals. Three genes coding for putative P(IB)-type ATPases are present in the genome of Thermus thermophilus (HB8 and HB27): the TTC1358, TTC1371, and TTC0354 genes; these genes are annotated, respectively, as two copper transporter (CopA and CopB) genes and a zinc-cadmium transporter (Zn(2+)/Cd(2+)-ATPase) gene. We cloned and expressed the three proteins with 8His tags using a T. thermophilus expression system. After purification, each of the proteins was shown to have phosphodiesterase activity at 65°C with ATP and p-nitrophenyl phosphate (pNPP) as substrates. CopA was found to have greater activity in the presence of Cu(+), while CopB was found to have greater activity in the presence of Cu(2+). The putative Zn(2+)/Cd(2+)-ATPase was truncated at the N terminus and was, surprisingly, activated in vitro by copper but not by zinc or cadmium. When expressed in Escherichia coli, however, the putative Zn(2+)/Cd(2+)-ATPase could be isolated as a full-length protein and the ATPase activity was increased by the addition of Zn(2+) and Cd(2+) as well as by Cu(+). Mutant strains in which each of the three P-type ATPases was deleted singly were constructed. In each case, the deletion increased the sensitivity of the strain to growth in the presence of copper in the medium, indicating that each of the three can pump copper out of the cells and play a role in copper detoxification.  相似文献   

3.
Extensive insight into copper homeostasis has recently emerged. The Gram-positive bacterium Enterococcus hirae has been a paradigm for many aspects of the process. The cop operon of E. hirae consists of four genes that encode a repressor, CopY, a copper chaperone, CopZ, and two CPx-type copper ATPases, CopA and CopB. CopA and CopB accomplish copper uptake and export, respectively, and the expression of the cop operon is regulated by copper via the CopY repressor and the CopZ chaperone. The functions of the four Cop proteins have been extensively studied in vivo as well as in vitro and a detailed understanding of the regulation of the cop operon by copper has emerged.  相似文献   

4.
The cop operon of Enterococcus hirae encodes a repressor, CopY, a copper chaperone, CopZ, and two copper ATPases, CopA and CopB. Regulation of the cop operon is bi-phasic, with copper addition as well as copper chelation leading to induction. Using a plasmid-borne system with a reporter gene, induction of wild-type and mutant cop promoters by high and low copper conditions was investigated. Only mutations that impaired the interaction of CopY with both DNA binding sites had a marked effect on regulation, leading to hyperinduction by copper(I) or copper(II). Chelation of copper(II), but not copper(I), also induced the operon, but induction by copper chelation was not significantly affected by the mutations. E. hirae mutants with reduced extracellular copper reductase activity exhibited the same induction kinetics as wild-type cells. These results show that copper addition and copper chelation induce the cop operon by different routes.  相似文献   

5.
Copper is an essential component of life because of its convenient redox potential of 200-800 mV when bound to protein. Extensive insight into copper homeostasis has only emerged in the last decade and Enterococcus hirae has served as a paradigm for many aspects of the process. The cop operon of E. hirae regulates copper uptake, availability, and export. It consists of four genes that encode a repressor, CopY, a copper chaperone, CopZ, and two CPx-type copper ATPases, CopA and CopB. Most of these components have been conserved across the three evolutionary kingdoms. The four Cop proteins have been studied in vivo as well as in vitro and their function is understood in some detail.  相似文献   

6.
7.
P1B-type ATPases transport heavy metal ions across cellular membranes. Archaeoglobus fulgidus CopB is a member of this subfamily. We have cloned, expressed in Escherichia coli, and functionally characterized this enzyme. CopB and its homologs are distinguished by a metal binding sequence Cys-Pro-His in their sixth transmembrane segment (H6) and a His-rich N-terminal metal binding domain (His-N-MBD). CopB is a thermophilic protein active at 75 degrees C and high ionic strength. It is activated by Cu2+ with high apparent affinity (K1/2 = 0.28 microm) and partially by Cu+ and Ag+ (22 and 55%, respectively). The higher turnover was associated with a faster phosphorylation rate in the presence of Cu2+. A truncated CopB lacking the first 54 amino acids was constructed to characterize the His-N-MBD. This enzyme showed reduced ATPase activity (50% of wild type) but no changes in metal selectivity, ATP dependence, or phosphorylation levels. However, a slower rate of dephosphorylation of the E2P(Cu2+) form was observed for truncated CopB. The data suggest that the presence of the His residue in the putative transmembrane metal binding site of CopB determines a selectivity for this enzyme that is different for that observed in Cu+/Ag+-ATPases carrying a Cys-Pro-Cys sequence. The His-NMBD appears to have a regulatory role affecting the metal transport rate by controlling the metal release/dephosphorylation rates.  相似文献   

8.
Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu+ to the CopY repressor, thereby releasing its bound zinc and abolishing repressor–DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into the function of CopZ, the yeast two-hybrid system was used to screen for proteins interacting with the copper chaperone. This led to the identification of Gls24, a member of a family of stress response proteins. Gls24 is part of an operon containing eight genes. The operon was induced by a range of stress conditions, but most notably by copper. Gls24 was overexpressed and purified, and was shown by surface plasmon resonance analysis to also interact with CopZ in vitro . Circular dichroism measurements revealed that Gls24 is partially unstructured. The current findings establish a novel link between Gls24 and copper homeostasis.  相似文献   

9.
Heavy metal P1B-type ATPases play a critical role in cell survival by maintaining appropriate intracellular metal concentrations. Archaeoglobus fulgidus CopB is a member of this family that transports Cu(II) from the cytoplasm to the exterior of the cell using ATP as energy source. CopB has a 264 amino acid ATPBD (ATP-binding domain) that is essential for ATP binding and hydrolysis as well as ultimately transducing the energy to the transmembrane metal-binding site for metal occlusion and export. The relevant conformations of this domain during the different steps of the catalytic cycle are still under discussion. Through crystal structures of the apo- and phosphate-bound ATPBDs, with limited proteolysis and fluorescence studies of the apo- and substrate-bound states, we show that the isolated ATPBD of CopB cycles from an open conformation in the apo-state to a closed conformation in the substrate-bound state, then returns to an open conformation suitable for product release. The present work is the first structural report of an ATPBD with its physiologically relevant product (phosphate) bound. The solution studies we have performed help resolve questions on the potential influence of crystal packing on domain conformation. These results explain how phosphate is co-ordinated in ATPase transporters and give an insight into the physiologically relevant conformation of the ATPBD at different steps of the catalytic cycle.  相似文献   

10.
11.
12.
Tetrathiomolybdate (TTM) has been examined for its effect on copper metabolism in mouse hepatocytes in primary culture and human fibroblasts. It decreased the amount of copper inside hepatocytes, decreased the rate of copper uptake by hepatocytes in a concentration dependent manner, and increased the copper efflux from the cells. TTM appeared to remove copper preferentially from the labile pool, but with a lower affinity than cage chelators. In fibroblasts, TTM only had a marginal effect on copper levels below a concentration of 100 microM and had no clear effect on the rate of copper uptake. TTM was not toxic to human fibroblasts, but in some preparations, a concentration of more than 50 microM was toxic to hepatocytes.  相似文献   

13.
Copper is an essential plant micronutrient playing key roles in cellular processes, among them photosynthesis. In Arabidopsis thaliana, copper delivery to chloroplasts, mainly studied by genetic approaches, is thought to involve two P(IB)-type ATPases: AtHMA1 and AtHMA6/PAA1. The lack of biochemical characterization of AtHMA1 and PAA1, and more generally of plant P(IB)-type ATPases, is due to the difficulty of getting high amounts of these membrane proteins in an active form, either from their native environment or after expression in heterologous systems. In this study, we report the first biochemical characterization of PAA1, a plant copper-transporting ATPase. PAA1 produced in Lactococcus lactis is active, forming an aspartyl phosphate intermediate in the presence of ATP and the adequate metal ion. PAA1 can also be phosphorylated using inorganic phosphate in the absence of transition metal. Both phosphorylation types allowed us to demonstrate that PAA1 is activated by monovalent copper ions (and to a lower extent by silver ions) with an apparent affinity in the micromolar range. In agreement with these biochemical data, we also demonstrate that when expressed in yeast, PAA1 induces increased sensitivities to copper and silver. These data provide the first enzymatic characterization of a P(IB-1)-type plant ATPase and clearly identify PAA1 as a high affinity Cu(I) transporter of the chloroplast envelope.  相似文献   

14.
The solution structure of the N-terminal region (151 amino acids) of a copper ATPase, CopA, from Bacillus subtilis, is reported here. It consists of two domains, CopAa and CopAb, linked by two amino acids. It is found that the two domains, which had already been separately characterized, interact one to the other through a hydrogen bond network and a few hydrophobic interactions, forming a single rigid body. The two metal binding sites are far from one another, and the short link between the domains prevents them from interacting. This and the surface electrostatic potential suggest that each domain receives copper from the copper chaperone, CopZ, independently and transfers it to the membrane binding site of CopA. The affinity constants of silver(I) and copper(I) are similar for the two sites as monitored by NMR. Because the present construct "domain-short link-domain" is shared also by the last two domains of the eukaryotic copper ATPases and several residues at the interface between the two domains are conserved, the conclusions of the present study have general validity for the understanding of the function of copper ATPases.  相似文献   

15.
Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu+ (Km ∼1 or 0.5 μm, respectively) and similar affinity to Ag+ (Km ∼2.5 μm). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu+ transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess.  相似文献   

16.
Copper-resistant strains of Xanthomonas campestris pv. juglandis occur in walnut orchards throughout northern California. The copper resistance genes from a copper-resistant strain C5 of X. campestris pv. juglandis were cloned and located on a 4.9-kb ClaI fragment, which hybridized only to DNA of copper-resistant strains of X. campestris pv. juglandis, and was part of an approximately 20-kb region which was conserved among such strains of X. campestris pv. juglandis. Hybridization analysis indicated that the copper resistance genes were located on the chromosome. Plasmids conferring copper resistance were not detected in copper-resistant strains, nor did mating with copper-sensitive strains result in copper-resistant transconjugants. Copper resistance genes from X. campestris pv. juglandis shared nucleotide sequence similarity with copper resistance genes from Pseudomonas syringae pv. tomato, P. syringae, and X. campestris pv. vesicatoria. DNA sequence analysis of the 4.9-kb fragment from strain C5 revealed that the sequence had an overall G+C content of 58.7%, and four open reading frames (ORF1 to ORF4), oriented in the same direction. All four ORFs were required for full expression of copper resistance, on the basis of Tn3-spice insertional inactivation and deletion analysis. The predicted amino acid sequences of ORF1 to ORF4 showed 65, 45, 47, and 40% identity with CopA, CopB, CopC, and CopD, respectively, from P. syringae pv. tomato. The most conserved regions are ORF1 and CopA and the C-terminal region (166 amino acids from the C terminus) of ORF2 and CopB. The hydrophobicity profiles of each pair of predicted polypeptides are similar except for the N terminus of ORF2 and CopB. Four histidine-rich polypeptide regions in ORF1 and CopA strongly resembled the copper-binding motifs of small blue copper proteins and multicopper oxidases, such as fungal laccases, plant ascorbate oxidase, and human ceruloplasmin. Putative copper ligands of the ORF1 polypeptide product are proposed, indicating that the polypeptide of ORF1 might bind four copper ions: one type 1, one type 2, and two type 3.  相似文献   

17.
Copper is both essential for life and toxic. Aberrant regulation of copper at the level of intracellular transport has been associated with inherited diseases, including Wilson's disease (WND) in humans. WND results in accumulation of copper and the copper and zinc-binding protein metallothionein (MT) in liver and other tissues, liver degeneration, and neurological dysfunction. The toxic milk (TX) mutation in mice results in a phenotype that mimics human WND, and TX has been proposed to be a model of the disease. We characterized TX mice as a model of altered metal ion and MT levels during development, and after treatment with the metal ion chelators tetrathiomolybdate (TTM) and deferiprone (L1). We report that hepatic, renal and brain copper and MT are elevated in TX mice at 3 and 12 months of age. Zinc was significantly higher in TX mouse liver, but not brain and kidney, at both time points. Nodules appeared spontaneously in TX mouse livers at 8-12 months that maintained high copper levels, but with more normal morphology and decreased MT levels. Treatment of TX mice with TTM significantly reduced elevated hepatic copper and MT. Transient increases in blood and kidney copper accompanied TTM treatment and indicated that renal excretion was a significant route of removal. Treatment with L1, on the other hand, had no effect on liver or kidney copper and MT, but resulted in increased brain copper and MT levels. These data indicate that TTM, but not L1, may be useful in treating diseases of copper overload including WND.  相似文献   

18.
Tetrathiomolybdate (TTM) is a powerful and selective copper (Cu) chelator that is used as a therapeutic agent for Wilson disease. TTM is the sole agent that can remove Cu bound to metallothionein (MT) in the livers of Long-Evans rats with a cinnamon-like coat color (LEC rats). However, the administration of excess TTM causes the deposition of Cu and molybdenum (Mo) in the liver. In the present study, the effect of hepatic glutathione (GSH) depletion on the removal of Cu from the livers of LEC rats was evaluated to establish an effective therapy by TTM. Pretreatment with l-buthionine sulfoximine (BSO), a depletor of GSH in vivo, reduced the amounts of Cu and Mo excreted into both the bile and the bloodstream, and increased the amounts of Cu and Mo deposited in the livers of LEC rats in the form of an insoluble complex 4 h after the TTM injection. The results suggest that GSH depletion creates an oxidative environment in the livers of LEC rats, and the oxidative environment facilitates the insolubilization of Cu and Mo in the livers of LEC rats after the TTM injection. Therefore, the effect of TTM on the removal of Cu from the liver was reduced in the oxidized condition. Wilson disease patients and LEC rats develop liver injury caused by oxidative damage. From a clinical viewpoint, increasing in the GSH concentration is expected to enhance the effect of TTM.  相似文献   

19.
Wilson disease is an autosomal recessive disorder of copper metabolism. The gene for this disorder has been cloned and identified to encode a copper-transporting ATPase (ATP7B), a member of a large family of cation transporters, the P-type ATPases. In addition to the core elements common to all P-type ATPases, the Wilson copper-transporting ATPase has a large cytoplasmic N-terminus comprised six heavy metal associated (HMA) domains, each of which contains the copper-binding sequence motif GMT/HCXXC. Extensive studies addressing the functional, regulatory, and structural aspects of heavy metal transport by heavy metal transporters in general, have offered great insights into copper transport by Wilson copper-transporting ATPase. The findings from these studies have been used together with homology modeling of the Wilson disease copper-transporting ATPases based on the X-ray structure of the sarcoplasmic reticulum (SR) calcium-ATPase, to present a hypothetical model of the mechanism of copper transport by copper-transporting ATPases.  相似文献   

20.
Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases in prokaryotic kingdom. In eukaryotes, in addition to removing excess copper from the cell, Copper-ATPases have another equally important function - to supply copper to copper dependent enzymes within the secretory pathway. This review focuses on the origin and diversification of Copper ATPases in eukaryotic organisms. From a single Copper ATPase in protozoans, a divergence into two functionally distinct ATPases is observed with the evolutionary appearance of chordates. Among the key functional domains of Copper-ATPases, the metal-binding N-terminal domain could be responsible for functional diversification of the copper ATPases during the course of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号