首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppressor T (Ts) cells that can suppress delayed type hypersensitivity (DTH) against histocompatibility (H) antigens can be isolated from spleen and lymph nodes a few days after i.v. immunization of mice with irradiated allogeneic spleen cells. In this paper we investigated the suppression of the efferent phase of DTH to characterize the Ts cells involved, and to compare them with the afferent phase Ts cells that have been characterized in a previous paper of this series. The DTH against third party alloantigens that were not used for the i.v. suppressive immunization could be suppressed by presenting the third party alloantigens together with the original alloantigens in the challenge inoculum for eliciting the DTH reaction. Thus the ultimate suppressive effect by the Ts cells that are active during the efferent phase of DTH is nonspecific. This non-specific suppression of DTH to alloantigens has previously been found for the afferent phase Ts cells as well. For suppression of the efferent phase of DTH to alloantigens, a population of Lyt-1+2+ Ts cells appeared to be essential, just like in the suppression of the afferent phase of DTH to alloantigens. We did not find evidence for the involvement of cyclophosphamide-sensitive auxiliary Ts cells in suppression of the efferent phase of DTH. Also no evidence was found for H-2 or Igh-restricted activation and function of the Ts cells that were active during afferent and efferent phases of the DTH response to H antigens. In view of these similarities between afferent phase and efferent phase Ts cells we conclude that there are no arguments as yet to suppose that there is more than one type of T cells involved in the suppression of the afferent and efferent limb of DTH against H antigens.  相似文献   

2.
We have studied the immunomodulatory effect of dextran on the development of delayed-type contact hypersensitivity to a hapten in mice. Administration of an optimal dose of dextran 2 hours before applying picryl chloride to abdominal skin caused a twofold rise in the level of hapten-specific DTH. A study of the kinetics of development of DTH under the influence of dextran showed that comparable levels of response could be seen 2 days earlier in treated than in untreated mice, i.e., on the third day in contrast to the fifth day after sensitization. The peak of the responses, while greater in dextran-treated mice than in normal controls, remained the same at 5 days. Adoptive transfer studies revealed that comparable levels of DTH were conferred upon recipient mice by half the number of splenic cells from dextran-treated mice than that required from normal sensitized mice. Because several suppressor mechanisms are known to down-regulate DTH, we have studied dextran's effect on the neutralization of these systems as a possible explanation for its enhancing capabilities. Detailed examination was made of dextran's effect on the two suppressor T cells, Ts1 and Ts3, that act in tandem as well as its effect on the Ts1 and macrophage that work in combination. Both systems depress the efferent limb of DTH. We have found that dextran blocks the Ts1-macrophage pathway that controls DTH. Ts1 was found to arise normally in mice pretreated with dextran. Furthermore, Ts1 from dextran-treated mice produced TsF1 normally. However, we have found that dextran interferes with the production of macrophage suppressor factor (M phi-SF). Interference was partial when dextran was introduced during the interval in which macrophages were being armed with TsF1, and it was complete when dextran was put with pre-armed macrophages before they were triggered with antigen for production of M phi-SF. On the other hand, the Ts1-Ts3 limb of suppression remained unaffected by exposure to the immunomodulator. We found Ts3 arose normally in hapten-sensitized mice that had been pretreated with dextran. In addition, Ts3 became armed with TsF1 in vitro in the presence of dextran since the cells functioned properly to suppress mature DTH effector cells. Finally, TsF3 was able to act in vitro upon DTH effector cells despite the presence of dextran.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We investigated the mechanism(s) by which MHC-restricted suppressor T cells (Ts) induced by i.v. injection of allogeneic DNP-modified lymphoid cells (alloinduced Ts) suppress the DNFB contact sensitivity response. It was shown that alloinduced Ts acted only during the early phases (afferent limb) of sensitization. They were incapable of suppressing previously sensitized recipients or of inhibiting the expression of DNFB-immune LN cells when co-transferred into normal recipients. The target of alloinduced Ts seems to be cell proliferation, i.e., inhibition of antigen-induced cell proliferation (DNA synthesis) in Ts recipient mice. The failure of recipients of alloinduced Ts to generate DNFB-immune LN cells capable of transferring contact sensitivity to normal recipients also suggests that these Ts act by preventing the development of an expanded clone of mature immune T cells. The suppressive effects of alloinduced Ts also were inhibited by prior in vitro treatment with anti-TNP serum. The data are discussed in terms of current models of suppression, and are compared to mechanisms of suppression in other contact sensitivity models.  相似文献   

4.
The cellular and molecular characteristics of anti-idiotype-induced suppression have been investigated. We have shown that i.v. immunization of A/J or C.AL-20 mice with rabbit antibodies against the major cross-reactive idiotype on A/J anti-ABA antibodies induces splenic suppressor T cells (Ts) able to suppress T cell-mediated cytolytic and delayed-type hypersensitivity responses to ABA. In these studies, we compare the T suppressor activity manifested by anti-Id-induced suppressor cells with that described previously after conventional antigen priming. Results indicate that i.v. injection of anti-idiotypic antibodies primes for efferent level Ts; in contrast, i.v. administration of ABA-coupled cells induces afferent level suppressor cells. Soluble cell lysates, containing suppressor factor(s) derived from these anti-idiotype-induced Ts, can also mediate suppression of T cell immune responses in an efferent manner. Factor-mediated suppression is MHC-unrestricted and is also observed in mice pretreated with cyclophosphamide, suggesting that this activity is analogous to third-order suppression. Furthermore, this factor suppresses the T cell-mediated DTH and CTL responses in an antigen-nonspecific but Igh-restricted manner. These latter results suggest that the cellular elements conferring antigen specificity and Igh restriction are separate. The implications of these findings to the relationship between idiotypic elements, antigen-binding structures, and Igh restriction elements on immunoregulatory T cells are discussed.  相似文献   

5.
Murine fibrosarcomas produce a factor that activates suppressor cells to inhibit expression of delayed-type hypersensitivity (DTH) responses to dinitrochlorobenzene (DNCB). This tumor-derived suppressor factor (TDSF) was partially purified by preparative isoelectric focusing of spent medium and 3 M KCl extracts of cultured methylcholanthrene-induced and spontaneous fibrosarcomas of C3H/He mice. Incubation of 1 micrograms/ml of a fraction, isoelectric pH less than 2.9, with normal syngeneic spleen cells for 1-6 hr at 37 degrees C induced suppressor cells that inhibited the primary DTH response to DNCB upon intraperitoneal transfer to normal C3H/HeJ mice. TDSF was not present in extracts of either syngeneic embryonic fibroblasts or normal spleen cells or in medium conditioned by normal peritoneal exudate cells but was present in 3 M KCl extracts of and the spent medium from four different cultured murine fibrosarcomas. TDSF activity was not restricted at the major histocompatibility complex. The suppressor cells inhibited the efferent limb of the DTH response because (1) hyporesponsive recipients of TDSF-treated spleen cells had splenic effector T cells capable of transferring DTH to DNCB into naive secondary recipients and (2) the ability of Lyt 1+,2- effector Tdth cells to transfer a secondary DTH response to DNCB was inhibited by co-incubation with macrophages or Lyt 1-,2+ T cells treated with TDSF. Preliminary biochemical analysis suggested that TDSF was an RNA- protein complex. Thus, several murine fibrosarcomas produced a soluble factor that activated splenic suppressor cells to depress the immune response to nonneoplastic antigens. These suppressor factors represent a novel group of regulatory molecules which may be ribonucleoprotein complexes.  相似文献   

6.
We have previously shown that a single i.p. injection of the monovalent synthetic antigen, L-tyrosine-p-azophenyltrimethylammonium [tyr(TMA)] in complete Freund's adjuvant induces an anti-idiotypic T suppressor cell (Ts2) population that can be detected 6 wk later by its ability to shut down delayed-type hypersensitivity (DTH) specific for the TMA hapten. In this paper we present evidence that 2 wk after tyr(TMA) administration, a subset of Ts, termed Ts1, appears that is both functionally and phenotypically distinct from the late appearing Ts2 population. The early occurring Ts1 act only at the induction phase of the DTH response and can also suppress this response intrinsically. This latter point is in marked contrast to our previous observation that the tyr(TMA)-induced anti-idiotypic Ts2 fail to function intrinsically and can only be detected upon adoptive transfer into naive mice. Ts1 bear idiotypic receptors and are Ly-1+,2- in contrast to the anti-idiotypic Ly-1-,2+ Ts2 population. In addition, unlike the Ts2 population, Ts1 are comparatively nylon wool-adherent. Adsorption of Ts1 on either antigen- or idiotype-coated petri dishes indicate that the suppressor activity can be transferred only by antigen-binding cells. Cellfree factors prepared from spleens containing the Ts1 population can suppress DTH only if administered at the induction phase of the response, in contrast to the factors derived from the Ts2 population that act both at induction as well as effector phases, suggesting that Ts1 and Ts2 can function via soluble mediators. Finally, we show that when Ts1-bearing mice are primed and boosted for anti-TMA antibody formation, the resulting response was overall reduced with respect to the idiotype-positive and negative plaque-forming cells that differs from the Ts2-bearing hosts wherein the idiotypic component is preferentially suppressed. The appearance of Ts1 before the detection of Ts2 in the same experimental animals is discussed with reference to a normal physiologic sequence of events involved in suppressor pathways.  相似文献   

7.
A set of I-J-bearing murine splenic antigen-presenting cells (APC) has been found to be responsible for first order suppressor cell (Ts1, afferent suppressor cell) activation in the azobenzenearsonate (ABA) hapten system after intravenous administration. Suppressor cells induced by this set of hapten-coupled cells do not function in the efferent phase of the delayed hypersensitivity (DTH) response. The functional activity of this novel APC to activate afferent suppressor cells was resistant to a dose of ultraviolet radiation (UVR) sufficient to largely abrogate the ability of splenic APC to immunize for a DTH response. It was also found that the previously described splenic I-J-bearing APC needed for third-order suppressor cell (Ts3, effector-suppressor cell) activation is adherent and UVR resistant. The sets of I-J-bearing APC appear to be crucial elements in the activation of suppression and thus in determining the balance between immunologic reactivity and unresponsiveness. Furthermore, the UVR resistance of this set of novel APC may be relevant to the in vivo effects of UVR exposure to mice.  相似文献   

8.
Using a rat model, we have previously demonstrated that infection with Cryptococcus neoformans can trigger the production of a series of suppressor cells that specifically inhibit the cell-mediated immune response to a non-related antigen, human serum albumin (HSA), that has been injected 7 days after the infection. We previously determined that the cryptococcal infection induces afferent suppressor or suppressor induction cells (Ts1) to HSA. The primary objective of the present study was to investigate the suppressor cells involved in the efferent phase of delayed-type hypersensitivity (DTH) response to HSA in rats infected with C. neoformans and immunized with the non-related antigen and determine the role that the Ts1 cell plays in the induction of that cell. For this purpose, the spleen mononuclear (SpM) cells containing the Ts1 or SpM cells from immunized non-infected rats (used as donor controls) were transferred to two groups of syngeneic naive recipients (first recipients). Later, the SpM cells from both groups of animals were transferred to rats immunized with HSA (second recipients). The efferent limb of the DTH response to HSA was suppressed in the recipients that received SpM cells from donors injected with Ts1 cells. Additional HSA antigen was not required for induction of these efferent suppressor cells. Furthermore, we here show that these cells are resistant to treatment with cyclophosphamide (Cy), and that they can activate another suppressor population. The latter are Cy sensitive and are present in the immune recipient.  相似文献   

9.
We studied the cellular immune responses to ocular anterior chamber (AC) priming of mice. A/J mice primed subcutaneously with azobenzenearsonate-coupled spleen cells (ABA-SC) manifested delayed-type hypersensitivity (DTH) in the form of footpad swelling when challenged 5 days later with the diazonium salt of ABA. Mice inoculated with ABA-SC in the anterior chamber at the time of subcutaneous priming, however, were tolerant to ABA. Subconjunctival inoculation with ABA-SC did not tolerize; rather it primed for DTH. Antibodies against ABA were not detectable in significant amounts in mice made tolerant by AC inoculation. The AC-induced tolerance was shown to result from hapten-specific T cell-mediated suppression. Suppressor T cells (Ts) arising from AC priming suppressed the efferent limb of the immune response and did not bear detectable cross-reactive idiotype (CRI) surface receptors. In these phenotypic and functional respects, AC-induced Ts differed from first-order Ts (Ts1) that result from i.v. priming. The results are discussed with respect to immune privilege and the anterior chamber of the eye.  相似文献   

10.
Resistant CBA mice infected with Leishmania tropica promastigotes develop concomitant and convalescent immunity against reinfection. This can be adoptively transferred by splenic and lymph node T cells with a threshold dosage of 1 to 2.5 x 10(7). The effector cells are of Thy-1+, Lyt-1+2- phenotype. The same immune cell population also adoptively transfers specific DTH to L. tropica, which is restricted by the major histocompatibility complex. On the other hand, highly susceptible BALB/c mice infected with L. tropica develop antigen-specific suppressor T (Ts) cells (previously shown to inhibit the induction and expression of DTH), which are capable, on transference, of reversing the healing of lesions induced by prior sublethal irradiation of BALB/c mice. As few as 10(6) of these T cells are effective in abrogating the potent prophylactic effect of 550 rad. The Ts cells are of Thy-1+, Lyt-1+2-, and I-J- phenotype. Sublethally irradiated and infected BALB/c mice produce antibody responses quantitatively and isotypically similar during the critical first 40 days after infection whether or not they are injected with 10(7) Ts cells (nonhealing vs healing). Thus, impairment of DTH and curative immune responses in BALB/c mice cannot be attributed to a helper function of these Thy-1+, Lyt-1+2- cells for the formation of suppressive antibody.  相似文献   

11.
The first detectable suppressor T cell (Ts) arising after i.v. administration of azobenzenearsonate- (ABA) conjugated syngeneic spleen cells to A/J mice has been studied for its receptor specificity and ability to produce soluble suppressor factor(s). This cell, termed Ts1, has a specific receptor for the eliciting antigen ABA, as demonstrated by selective binding to ABA protein- but not TNP protein-coated plastic dishes. The activity of ABA-Ts1 can be abrogated by treatment with anti-idiotypic antibodies made against anti-ABA antibodies of A/J mice (anti-CRI), indicating that these ABA-binding cells possess a surface receptor structure sharing idiotypic determinants with antibodies of the same specificity. Finally, soluble extracts from, antigen-adherent ABA-Ts1, but not nonadherent cells from the same spleen cell population, possess suppressive activity when assayed directly for afferent suppression or tested for their ability to trigger a second population of Ts (Ts2) in naive recipients. These findings demonstrate a close concordance between a T cell surface receptor, soluble T suppressor factors, and B cell derived antibody, all capable of direct recognition of the eliciting ABA antigen.  相似文献   

12.
The effects of electrophoretically pure murine interferon (Mu-IFN-alpha beta) on the T suppressor pathway and on the T effector cell of delayed hypersensitivity (TDH) were investigated in BALB/c mice, in a 2,4-dinitrofluorobenzene (DNFB) contact-sensitivity model. Various T cell subpopulations, suppressor T cells of the afferent (Ts-aff) and efferent (Ts-eff) types, an auxiliary Ts (Ts-aux), as well as TDH were induced, and their function was assessed in transfer experiments. The results were as follows. At a dose of 5 X 10(3) U, IFN was shown to inhibit the Ts-aff response, when given to the donor animal shortly after induction of the Ts-aff subpopulation or when injected into the recipient 2 hr after spleen cell transfer. Pretreatment in vitro with IFN of the splenic cells to be transferred also abolished the Ts-aff response. Similar amounts of IFN were able to inhibit the generation of Ts-eff in the donor animals, whereas 10-fold-higher amounts were needed in vivo or in vitro to block the functional expression of Ts-eff in the recipient animal. Intravenous injection of IFN into recipients of Ts-eff on day 0 and 1 after sensitization inhibited the expression of the Ts-eff transferred 1 day before ear challenge. This suggests that the Ts-aux response required for the TDH suppression by Ts-eff is blocked by IFN. Secretion of a suppressor factor by Ts in vitro was not blocked by IFN. Treatment of the donor of suppressor factor-secreting Ts with IFN, however, blocked the induction of this Ts. The TDH were not sensitive to IFN even at amounts approximately 100 times higher than those used for the Ts inhibition in vivo as well as in vitro. These results demonstrate that low amounts of IFN may selectively block the suppressor pathway, because induction of these regulatory T cell subsets appears to be particularly sensitive to IFN. The exact mechanism of the IFN-mediated inhibition of Ts is not yet clear. The data suggest an important regulatory function of IFN in delayed-type hypersensitivity (DTH) reactions.  相似文献   

13.
Two suppressor cell populations that interact to down-regulate in vivo development of the cytolytic T-cell (CTL) response to trinitrophenyl-modified syngeneic spleen cells (TNP-SC) have been further characterized. Suppressor cells induced by the iv injection of trinitrophenyl-modified syngeneic spleen cells possess Thy 1.2 antigen. Their precursors are insensitive to pretreatment of host animals with cyclophosphamide (CY). Suppressor cells that arise after dermal sensitization with trinitrochlorobenzene are also Thy 1.2 antigen positive but their precursors are sensitive to pretreatment with CY. These characteristics of the two suppressor T cells (Ts) are identical to those of the two Ts that are generated by similar methodologies and that together suppress contact sensitivity (CS) to picryl chloride. Neither the CS nor CTL response was suppressed when host animals possessed only one set of Ts. In contrast to suppression of CS at the efferent phase, development of CTL was suppressed only when the two Ts were present early during sensitization (afferent phase). Since the results point to several similarities between the two sets of Ts that are active in the down-regulation of the CS and CTL responses, it is suggested that the two dissimilar immune responses directed to the same hapten, namely CS and CTL, may be controlled by the same suppressor cells. Since it appears that the two sets of Ts interact to affect different phases of the CS and CTL responses, down-regulation of each must be accomplished through different mechanisms.  相似文献   

14.
Tolerance in contact sensitivity to DNFB can be adoptively transferred to normal mice with lymph node cells from tolerant donors. This tolerance is antigen specific and is mediated by T cells, i.e., "suppressor" T cells. Experiments were carried out to investigate the mechanism(s) by which the suppressor T cells induce tolerance to DNFB contact sensitivity. The suppressor cells were effective only if they were present during the early stages of the afferent limb of sensitization. As measured by DNA synthesis, cell proliferation in the draining lymph nodes of recipients of suppressor cells was found to be significantly less than in control animals indicating that the suppressor cells acted, at least in part, by limiting or inhibiting DNFB-induced cell proliferation. This inhibition was shown to be antigen specific since the DNFB suppressor cells did not inhibit cell proliferation induced by oxazolone, an unrelated contact sensitizer. The ability to DNFB tolerant cells to block afferent sensitization pathways differs from the mechanism of tolerance to picryl chloride, reported by others, where efferent pathways are blocked.  相似文献   

15.
The effect of suppressor T cells (Ts) on the induction and the subsequent development of memory T cells for delayed-type hypersensitivity (DTH) was examined. The memory cells were induced in the spleens of mice primed previously with a low dose of reduced and alkylated ovalbumin (Ra-OA), and they generated DTH-effector T cells (DTH-Te) in a significantly accelerated fashion when cultured with OA in vitro. Ts were obtained from the spleens of mice which received OA-coupled spleen cells i.v. 4 days previously, and they inhibited antigen-specifically the induction of DTH responses in the recipient mice sensitized with alum-absorbed OA only when transferred with 5 weeks before sensitization. The spleen cells from mice given Ts together with the priming antigen 7 weeks before culture failed to generate DTH-Te in an accelerated manner on restimulation with OA in vitro. The memory cells from primed mice also did not cause accelerated generation of DTH-Te, when cultured with Ts in the presence of OA in vitro. These results indicate that both the induction of the memory cells by priming with antigen in vivo and the subsequent development of memory cells to DTH-Te by restimulation in vitro are inhibited independently by Ts. This corresponded well with the effect of Ts on the development of DTH-memory in vivo.  相似文献   

16.
Mice bearing established syngeneic tumors fail to reject them when immunized according to protocols based on optimal conditions for BCG potentiation of specific delayed-type hypersensitivity (DTH) and antitumor immunity. Serum factors from mice bearing either the poorly immunogenic mastocytoma, P815 (MA), or the more antigenic sarcoma, Meth A, have been shown to depress both DTH and antitumor immunity. This report demonstrates that lymphoid cells adoptively transferred from these tumor-bearing hosts also can suppress the efferent and afferent phases of DTH to tumor-specific antigens in both BCG-primed and unprimed syngeneic hosts. Suppressor cells (SC) were detected in spleen, thymus, and lymph nodes draining the tumor site, but not in distant superficial lymph nodes. Maximal suppressor activity apeared 6 days after tumor implantation and waned by 18 days. Suppression of the afferent phase of both the BCG-primed and unprimed responses was antigen specific; suppression of the efferent phase of the BCG-primed response was also specific but SC could partially suppress the unprimed responses to sheep red blood cells (SRBC). Amputation of 6-day-old tumors resulted in the disappearance of splenic SC within 2 days but did not affect SC in draining lymph nodes. SC suppressed DTH in a dose-dependent manner but even the highest doses tested did not totally eliminate the response. Depression of the peak DTH reaction was not accompanied by significant abrogation of antitumor activity. If, however, SC were transferred during the ongoing antitumor response, immunity was partially suppressed. Efferentphase SC were sensitive to treatment with anti-Thy 1 sera and complement but were unaffected by B-cell depletion.  相似文献   

17.
Anterior chamber-associated immune deviation (ACAID) is a complex set of immune responses induced by the inoculation of antigens into the anterior chamber of the eye. Histocompatibility antigens, tumor-specific antigens, reactive haptens, and viral antigens have been shown to induce this phenomenon, which comprises the following specific host responses: high titer humoral antibodies, primed cytotoxic T cells, but specifically, impaired skin graft rejection and delayed-type hypersensitivity (DTH). Using the model system of ACAID induced by inoculation of P815 mastocytoma cells into the anterior chambers of H-2-compatible, but minor H-incompatible, BALB/c mice, we demonstrate that the impaired capacity of these animals to develop and express DTH is due to the activation of suppressor T cells. Generation of these cells requires an intact spleen, is not inhibited by cyclophosphamide pretreatment, and is abrogated by systemic treatment of the host with anti-I-J monoclonal antibodies. This splenic suppressor cell(s) can transfer suppression of DTH adoptively to naive syngeneic mice. One suppressor cell is Thy-1.2, Lyt-2.2, and I-Jd positive. A minority of these cells (or a second population of suppressor cells) also expresses the L3T4 surface marker. Suppression is exerted on the efferent limb of DTH expression, although afferent suppression is not excluded. P815-induced ACAID suppressor cells resemble similar cells induced by haptenated spleen cells inoculated into the anterior chamber of the eye. We propose that induction of these suppressor cells, whose target of action is selective for T DTH cells, but not for other types of T cells, is responsible for the phenomenon of immune privilege in the anterior chamber of the eye.  相似文献   

18.
The role of various subpopulations of antigen-presenting macrophages in the induction of T-lymphocyte subpopulations has been difficult to study in the past. We have used an in vitro system of bone marrow cell culture both to induce T-effector (TDH) and T-suppressor (Ts) cells active in delayed-type hypersensitivity. Bone marrow-derived macrophages (BM-MA) grown in Teflon bag cultures were allowed to attach to culture dishes and were pulse-labeled with 2,4-dinitrobenzene sulfonate (DNBSO3). Spleen cell lymphocytes from nonsensitized BALB/c mice were cocultured with antigen-pulsed or control BM-MA for 3 days. The lymphocytes were harvested, and injected iv into BALB/c mice which were challenged within 1 hr after injection by painting the right ear with 2,4-dinitrofluorobenzene (DNFB, effector test) or sensitized with DNFB on 2 days following iv injection of the cells and challenged 5 days later (suppressor test). Ear swelling was measured 24 hr later to assess the effector or suppressor function of the in vitro educated lymphocytes. BM-MA grown for 5 days (BM-MA 5) in L-cell conditioned medium induced only TDH cells (Thy 1+, Lyt 1+2-) whereas BM-MA grown for 10 days in conditioned medium induced only Ts cells (Thy 1+, Lyt 1-2+). In both cases, induced TDH and Ts cells were antigen specific. Functionally, induced Ts cells suppressed the afferent limb of the delayed response. When DNP-BM-MA 5 and DNP-BM-MA 10 were used to induce TDH or Ts cells in vivo by subcutaneous or intravenous injection respectively, only BM-MA 5 were able to sensitize recipient mice. Both 5- and 10-day macrophage populations induced Ts cells in vivo. Functionally, these Ts cells appeared to act on the efferent limb of the delayed reaction. We conclude that different populations of antigen-presenting macrophages can preferentially induce TDH or Ts cells, perhaps depending on antigen presentation in association with class II antigens or on the functional state of the antigen-presenting cell.  相似文献   

19.
Previous studies have shown that two types of virus-specific suppressor T cells (Ts) are induced in mice made tolerant with herpes simplex virus (HSV)-infected spleen cells (SC). One type of Ts blocks the afferent phase of the delayed hypersensitivity response to HSV (Ts-aff), and the other blocks the efferent or effector phase (Ts-eff). In this report we show that the induction requirements for these suppressor populations differ. Injection of SC infected for 6 h with HSV at a multiplicity of infection of 5 or less or treated with heat-inactivated virus induced only Ts-aff. Similar results were seen with SC incubated for 90 min in virus-free preparations containing only viral proteins. In contrast, the Ts-eff population was induced only by SC treated for 6 h with infectious HSV at a multiplicity of infection of 10. Collectively, these data indicate that Ts-aff are induced by adsorbed HSV antigens on SC, whereas Ts-eff are induced by nascent HSV antigens expressed on infected SC. In addition to their induction requirements, the two types of regulatory cells differ in their expression of effector function. Ts-eff but not Ts-aff require a cyclophosphamide-sensitive target cell in the immune recipient for suppressor function. The possible identity of this target cell and the significance of the different induction requirements between the two types of Ts are discussed.  相似文献   

20.
Intravenous administration of hapten-coupled, high-density (density greater than 1.077) epidermal cells (HD-EC) to mice results in the appearance of transferable splenic T suppressor (Ts) cells as assayed in adoptive transfer experiments. Depletion of I-A bearing cells from the HD-EC population before hapten coupling prevents these cells from inducing Ts cell formation, whereas depletion of Thy-1-bearing cells from the HD-EC cell preparation has no effect. When HD-EC are adhered to glass for 2 hr, the ability to induce Ts cell formation resides in the adherent population. Exposure of HD-EC to a dose of ultraviolet radiation (UVR) that largely abrogates the ability of hapten-coupled EC to immunize mice for a DTH response does not affect the ability of these cells to activate Ts cells. Treatment of mice with i.p. administration of 20 mg/kg of cyclophosphamide 2 days before EC harvesting abrogates the ability of HD-EC from these mice to induce Ts cell formation. HD-EC from B10.A(3R) (I-Jb) but not B10.A(5R) (I-Jk) mice induce Ts cell formation in B10.A(3R) mice, demonstrating that the ability to do so is restricted by the I-J locus. Transmission electron microscopy of adherent HD-EC populations demonstrated that two cell types were present. One type had the characteristics of keratinocytes; the other was monocyte-like and resembled Langerhans cells or indeterminate cells in many aspects. Immunoelectron microscopy revealed this second cell type to bear I-A/I-E antigen. These cells were T-200 positive and Mac-1 negative by immunoperoxidase staining. Extensive examination by light and electron microscopy failed to reveal any dermal components in the EC populations; however, a very small degree of dermal contamination cannot be excluded. Thus, EC that activate afferent-acting Ts cells are high-density, I-A+, Thy-1-, I-J restricted, glass adherent, and functionally UVR resistant and cyclophosphamide sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号