首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the countries surrounding the Mediterranean basin, most of the semi-natural grazing lands are covered by rangelands. Rangelands can be defined as highly heterogeneous natural vegetation communities with high conservation value, growing in harsh environments (poor soils, unfavourable climatic conditions). In the recent socio-economic context, traditional livestock grazing practices that enabled one to reconcile rangeland preservation and animal production no longer apply, especially because they require labour that has become scarce and costly. The consequence is rangeland degradation, due to underutilization in Southern Europe, and overutilization in Northern Africa. We analysed issues raised by rangeland utilization in livestock farming systems of the Mediterranean basin. Based on a review of the scientific literature about rangeland utilization in this area, we argue that the best way to reconcile animal production and rangeland preservation would be to promote management practices allowing animals to express their adaptative capacities in feeding behaviour and productive response. In order to propose management practices adapted to extensive and simplified systems, we conclude that research efforts should focus on: (i) proposing a functional characterization of vegetation heterogeneity at the scale of the vegetation community, (ii) validating the criteria determining animals' foraging behaviour on Mediterranean rangelands, (iii) developing and using simulation models to test management strategies against seasonal and long-term variability in climatic conditions and (iv) evaluating the potential of modern technologies for improving rangeland utilization.  相似文献   

2.
刘兴元  龙瑞军 《生态学报》2013,33(11):3404-3414
根据藏北那曲高寒草地的生产力、季节放牧重要性、生态服务价值、生态环境敏感性,构建了基于草地亚类的功能分区模型,从空间上将高寒草地划分为适度生产功能区、减畜恢复功能区和禁牧封育功能区,据此构建了基于高寒草地功能分区的分级生态补偿模式,设计了高寒草地生态补偿的组织管理体系及流程、生态补偿的损益评估机制和约束奖惩机制;提出了针对不同功能区的生态补偿方案.根据藏北那曲高寒草地功能分区结果和不同功能区生态补偿内容和目标,确定生态补偿周期为5a,核算出适度生产功能区、减畜恢复功能区和禁牧封育保护功能区分别需要补偿资金19.4亿元、15.77亿元和0.6亿元,每年分别需补偿资金3.88亿元、3.16亿元和0.12亿元,5a全区共需补偿资金35.77亿元,年需7.16亿元.通过对高寒草地的功能分区分级生态补偿,对提高高寒草地的生态保护能力,增加牧民的经济收入,促进藏北高寒草地生态系统的可持续发展具有重要的理论和实践意义.  相似文献   

3.
草地利用移动性的丧失导致生态系统退化,是草地放牧生态学领域兴起的主导性学说.在我国,草地利用移动性的丧失不仅是政策变化导致的,更是众多自然和社会因素叠加演进的结果.草地利用移动性的重建对于中国草地恢复和可持续性管理具有重要意义,但是很难通过恢复传统或季节性轮牧的途径实现.我们可以依托智能围栏、牲畜智能可穿戴设备以及草地...  相似文献   

4.
Assessing rangeland productivity is critical to reduce ecological degradation and promote sustainable livestock management. Here, we estimated biomass productivity and carrying capacity dynamics in the Borana rangeland of southern Ethiopia by using field-based data and remote sensing data (i.e., normalized difference vegetation index (NDVI)). Data was collected from both rainy and dry seasons when biomass production was high and low respectively. Results of linear regression showed that both biomass production (R2adj = 0.672) and NDVI value (R2adj = 0.471) were significantly decreased from 1990 to 2019. Field data and NDVI values for mean annual biomass showed a significant linear relationship. The model accuracy in the annual relationship between the observed and predicted biomass values was strong (R2adj = 0.986) but with high standard error, indicating that the observed biomass production in the rangeland area was not in good condition as compared with the predicted one. This study suggests that, using NDVI data and field-based data in combined way has high potential to estimate rangeland biomass and carrying capacity dynamics at extensively grazed arid and semi-arid rangelands. And to use for estimating stoking rates and predicting future management techniques for decision making.  相似文献   

5.
Rangelands provide the main forage resource for livestock in many parts of the world, but maintaining long-term productivity and providing sufficient income for the rancher remains a challenge. One key issue is to maintain the rangeland in conditions where the rancher has the greatest possibility to adapt his/her management choices to a highly fluctuating and uncertain environment. In this study, we address management robustness and adaptability, which increase the resilience of a rangeland. After reviewing how the concept of resilience evolved in parallel to modelling views on rangelands, we present a dynamic model of rangelands to which we applied the mathematical framework of viability theory to quantify the management adaptability of the system in a stochastic environment. This quantification is based on an index that combines the robustness of the system to rainfall variability and the ability of the rancher to adjust his/her management through time. We evaluated the adaptability for four possible scenarios combining two rainfall regimes (high or low) with two herding strategies (grazers only or mixed herd). Results show that pure grazing is viable only for high-rainfall regimes, and that the use of mixed-feeder herds increases the adaptability of the management. The management is the most adaptive with mixed herds and in rangelands composed of an intermediate density of trees and grasses. In such situations, grass provides high quantities of biomass and woody plants ensure robustness to droughts. Beyond the implications for management, our results illustrate the relevance of viability theory for addressing the issue of robustness and adaptability in non-equilibrium environments.  相似文献   

6.
Assessing the carrying capacity is of primary importance in arid rangelands. This becomes even more important during droughts, when rangelands exhibit non-equilibrium dynamics, and the dynamics of livestock conditions and forage resource are decoupled. Carrying capacity is usually conceived as an equilibrium concept, that is, the consumer density that can co-exist in long-term equilibrium with the resource. As one of the first, here we address the concept of carrying capacity in systems, where there is no feedback between consumer and resource in a limited period of time. To this end, we developed an individual-based model describing the basic characteristics of a rangeland during a drought. The model represents a rangeland composed by a single water point and forage distributed all around, with livestock units moving from water to forage and vice versa, for eating and drinking. For each livestock unit we implemented an energy balance and we accounted for the gut-filling effect (i.e. only a limited amount of forage can be ingested per unit time). Our results showed that there is a temporal threshold above which livestock begin to experience energy deficit and burn fat reserves. We demonstrated that such a temporal threshold increases with the number of animals and decreases with the rangeland conditions (amount of forage). The temporal threshold corresponded to the time livestock take to consume all the forage within a certain distance from water, so that the livestock can return to water for drinking without spending more energy than they gain within a day. In this study, we highlight the importance of a time threshold in the assessment of carrying capacity in non-equilibrium conditions. Considering this time threshold could explain contrasting observations about the influence of livestock number on livestock conditions. In case of private rangelands, the herd size should be chosen so that the spatial threshold equals (or exceeds) the length of the drought.  相似文献   

7.
Despite a growing body of research about rangeland degradation and the effects of policies implemented to address it on the Tibetan Plateau, little in-depth research has been conducted on how pastoralists make decisions. Based on qualitative research in Gouli Township, Qinghai province, China, we analyze the context in which Tibetan herders make decisions, and their decisions about livestock and pastures. We refute three fundamental assumptions upon which current policy is premised: that pastoralists aim to increase livestock numbers without limit; that, blindly following tradition, they do not actively manage livestock and rangelands; and that they lack environmental knowledge. We demonstrate that pastoralists carefully assess limits to livestock holdings based on land and labor availability; that they increasingly manage their livestock and rangelands through contracting; and that herding knowledge is a form of embodied practical skill. We further discuss points of convergence and contradiction between herders’ observations and results of a vegetation analysis.  相似文献   

8.
Fire is a key driver in savannah systems and widely used as a land management tool. Intensifying human land uses are leading to rapid changes in the fire regimes, with consequences for ecosystem functioning and composition. We undertake a novel analysis describing spatial patterns in the fire regime of the Serengeti‐Mara ecosystem, document multidecadal temporal changes and investigate the factors underlying these patterns. We used MODIS active fire and burned area products from 2001 to 2014 to identify individual fires; summarizing four characteristics for each detected fire: size, ignition date, time since last fire and radiative power. Using satellite imagery, we estimated the rate of change in the density of livestock bomas as a proxy for livestock density. We used these metrics to model drivers of variation in the four fire characteristics, as well as total number of fires and total area burned. Fires in the Serengeti‐Mara show high spatial variability—with number of fires and ignition date mirroring mean annual precipitation. The short‐term effect of rainfall decreases fire size and intensity but cumulative rainfall over several years leads to increased standing grass biomass and fuel loads, and, therefore, in larger and hotter fires. Our study reveals dramatic changes over time, with a reduction in total number of fires and total area burned, to the point where some areas now experience virtually no fire. We suggest that increasing livestock numbers are driving this decline, presumably by inhibiting fire spread. These temporal patterns are part of a global decline in total area burned, especially in savannahs, and we caution that ecosystem functioning may have been compromised. Land managers and policy formulators need to factor in rapid fire regime modifications to achieve management objectives and maintain the ecological function of savannah ecosystems.  相似文献   

9.
治理草原退化是我国草原管理的重点和难点。我国目前关于草原退化判断、退化程度、原因及治理等系列问题的确定几乎皆以科学研究结果为依据,而忽视了牧户作为草原直接使用者和管理者的重要性。牧户对草原有自己的判断和认知,其与科学方法研究之间的矛盾已经影响到草原生态保护政策的有效实施。以内蒙古东部草甸草原牧户尺度草原为研究对象,借助牧户调研和野外调查相结合的方法,将牧户划分为高、中、低3个经济水平,并运用Condition-Vigor-Organization-Resilience (CVOR)指数评价法,分析评价草原生态系统健康状况。研究结果显示,牧户对草原健康状况的感知主要从植被、土壤、牲畜等方面,与科学方法评价指标选取具有相似性;牧户感知和CVOR指数法评价结果具有一致性,均判定草原生态系统呈现不同程度退化;统计检验显示牧户对植被、土壤、牲畜影响等指标变化感知方面均不存在显著差异(P0.05),CVOR指数法下不同经济水平牧户草场健康指数之间亦无显著差异(P0.05),两种方法均显示不同经济水平牧户草场退化程度无显著差异(P0.05)。研究证实了牧户感知在指标选取、评价结果方面具备用于准确评价草原健康状况的可行性和可信度。两种方法相互补充,将有利于更加准确、实时动态监测和评价牧户尺度草原生态健康状况,为调整优化畜牧业生产实践提供指导和草原生态保护和建设政策的有效实施提供保障。  相似文献   

10.
《农业工程》2022,42(1):82-89
Land management is one of the most important factors affecting the protection and carbon sequestration of natural ecosystems. If the ecosystem is maintained naturally, it will have suitable vegetation and soil stability. One of the important factors that affects land management is livestock grazing. In order to evaluate the impact of exclosure rangeland on carbon sequestration (CS) in salty rangelands, the study was carried out in Inchehboroun rangelands of Golestan province, Iran. The main purpose of current research was to evaluate the effectiveness of management of salt rangeland on CS by topsoil and halophytes species. For this purpose, 40 plots (with 2 m2 area) were located along 8 transects of 100 m in exclosure rangeland (ER) and grazing rangeland (GR) sites. The sampling method was randomized-systematic. In the area sampled, plant biomass was estimated. In addition, the content of above ground and underground biomass carbon, litter carbon, and soil organic carbon were determined for both ER and GR. The difference between the means was compared using Duncan test and t-test at P < 0.05. The result showed that the total CS for ER site was 15.02 ton/ha while it was 11.934 ton/ha in the case of GR. The total carbon sequestration (TCS) in ER was higher than the GR site. The CS of Halocnemum strobilaceum with 17.4 and 11.74% in ER and GR relatively was higher than that of other species. The results showed that the CS of shrubs in GR was lower than the ER site. The results revealed that the amount of C is affected by the land management in the production of OM and its degradation in the topsoil of salt rangeland. Aerial part of plants are the most important and sensitive part of an ecosystem that directly affects the C uptake and is also strongly influenced by the effect of animal grazing.  相似文献   

11.
Plants are important components of any rangeland. However, the importance of desert rangeland plant diversity has often been underestimated. It has been argued that desert rangelands of Tunisia in good ecological condition provide more services than those in poor ecological condition. This is because rangelands in good condition support a more diverse mixture of vegetation with many benefits, such as forage for livestock and medicinal plants. Nearly one-quarter of Tunisia, covering about 5.5 million hectares, are rangelands, of which 87% are located in the arid and desert areas (45% and 42%, respectively). Here, we provide a brief review of the floristic richness of desert rangelands of Tunisia. Approximately 135 species are specific to desert rangelands. The predominant families are Asteraceae, Poaceae, Brassicaceae, Chenopodiaceae, and Fabaceae. These represent approximately 50% of Tunisian desert flora.  相似文献   

12.
Rangelands are among the most extensive anthropogenic landscapes on earth, supporting nearly 500 million people. Disagreements over the extent and severity of rangeland degradation affect pastoralist livelihoods, especially when impacts of drought and over-grazing are confounded. While vegetation indices (such as NDVI, or Normalized Difference Vegetation Index) derived from remotely sensed imagery are often used to monitor rangelands, their strategic integration with local ecological knowledge (LEK) is under-appreciated. Here, we explore these complementary approaches in Kyrgyzstan’s pasture-rich province of Naryn, where disagreements regarding pasture degradation could greatly benefit from additional information. We examine a time series of MODIS satellite imagery (2000–2015) to characterize browning trends in vegetation as well as to distinguish between climate- and grazing-induced trends. We also compare and contrast measured trends with LEK perceptions of pasture degradation. To do so, we first examine statistical trends in NDVI as well as in NDVI residuals after de-trending with meteorological data. Second, we use participatory mapping to identify areas local pasture managers believe are overgrazed, a particularly useful approach in lieu of reliable historical stocking rates for livestock in this region. Lastly, we compare the strengths and weaknesses of LEK and remote sensing for landscape monitoring.Browning trends were widespread as declining trends in NDVI (and NDVI residuals) covered 24% (and 9%) of the landscape, respectively. Local managers’ perceptions of pasture degradation better reflected trends seen in NDVI than in climate-controlled NDVI residuals, suggesting patterns in the latter are less apparent to managers. Our approach demonstrated great potential for the integration of two inexpensive and effective methods of rangeland monitoring well-suited to the country’s needs. Despite limitations due to terrain, our approach was most successful within the semi-arid steppe where pasture degradation is believed to be most severe. In many parts of the world, sources of long-term spatially extensive data are rare or even non-existent. Thus, paired LEK and remote sensing can contribute to comprehensive and informative assessments of land degradation, especially where contentious management issues intersect with sparse data availability. LEK is a valuable source of complementary information to remote sensing and should be integrated more routinely and formally into landscape monitoring. To aid this endeavor, we synthesize advice for linking LEK and remote sensing across diverse landscape situations.  相似文献   

13.
The San Francisco Bay Area in California, USA is a highly heterogeneous region in climate, topography, and habitats, as well as in its political and economic interests. Successful conservation strategies must consider various current and future competing demands for the land, and should pay special attention to livestock grazing, the dominant non-urban land-use. The main objective of this study was to predict changes in rangeland forage production in response to changes in temperature and precipitation projected by downscaled output from global climate models. Daily temperature and precipitation data generated by four climate models were used as input variables for an existing rangeland forage production model (linear regression) for California’s annual rangelands and projected on 244 12 km x 12 km grid cells for eight Bay Area counties. Climate model projections suggest that forage production in Bay Area rangelands may be enhanced by future conditions in most years, at least in terms of peak standing crop. However, the timing of production is as important as its peak, and altered precipitation patterns could mean delayed germination, resulting in shorter growing seasons and longer periods of inadequate forage quality. An increase in the frequency of extremely dry years also increases the uncertainty of forage availability. These shifts in forage production will affect the economic viability and conservation strategies for rangelands in the San Francisco Bay Area.  相似文献   

14.
A need exists in arid rangelands for effective monitoring of the impacts of grazing management on vegetation cover. Monitoring methods which utilize remotely-sensed imagery may have comprehensive spatial and temporal sampling, but do not necessarily control for spatial variation of natural variables, such as landsystem, vegetation type, soil type and rainfall. We use the inverse of the red band from Landsat TM satellite imagery to determine levels of vegetation cover in a 22,672km2 area of arid rangeland in central South Australia. We interpret this wealth of data using a cross-fence comparison methodology, allowing us to rank paddocks (fields) in the study region according to effectiveness of grazing management. The cross-fence comparison methodology generates and solves simultaneous equations of the relationship between each paddock and all other paddocks, derived from pairs of cross-fence sample points. We compare this ranking from two image dates separated by six years, during which management changes are known to have taken place. Changes in paddock rank resulting from the cross-fence comparison method show strong correspondence to those predicted by grazing management in this region, with a significant difference between the two common management types; a change from full stocking rate to light 20% stocking regime (Major Stocking Reduction) and maintenance of full 100% stocking regime (Full Stocking Maintained) (P = 0.00000132). While no paddocks had a known increase in stocking rate during the study period, many had a reduction or complete removal in stock numbers, and many also experienced removals of pest species, such as rabbits, and other ecosystem restoration activities. These paddocks generally showed an improvement in rank compared to paddocks where the stocking regime remained relatively unchanged. For the first time, this method allows us to rank non-adjacent paddocks in a rangeland region relative to each other, while controlling for natural spatio-temporal variables such as rainfall, soil type, and vegetation community distributions, due to the nature of the cross-fence experimental design, and the spatially comprehensive data available in satellite imagery. This method provides a potential tool to aid land managers in decision making processes, particularly with regard to stocking rates.  相似文献   

15.
Vulnerability Assessment (VA) has numerous management implications, particularly for locating the most vulnerable areas affected by land cover degradation. This study aims to assess and compare the relationship between socioeconomic vulnerability (SEV) and land cover indices (LCIs) in summer rangelands (Natanz county) and winter rangelands (Aran-V-Bidgol county) in Isfahan Province, Iran. To assess the socioeconomic vulnerability index (SEVI), a survey was conducted. Based on the SEVI, summer and winter rangelands were classified and mapped using a combination of fuzzy TOPSIS model and geographic information system (GIS) techniques. Field research was conducted to estimate LCIs, including plant cover, plant yield, litter (dead biomass), sand and gravel, bare soil, and forage production. Finally, the correlations between SEVI and LCIs were verified, and the SEV of winter rangelands and summer rangelands was examined. Results showed the rangelands of Chah Robat, Bidhend, and Tar were the most vulnerable summer rangelands, while the rangelands of Chah Zard, Cheshmeh Sefid, and Kandeh Matin were the most vulnerable winter rangelands. Findings further revealed more LCIs, including total ground cover, the yield of shrubs, and total yield had a significant relationship with SEVI in summer rangelands compared to winter rangelands (yield of annual forbs and total yield). Moreover, there was a significant difference between SEVI, determined by the fuzzy TOPSIS model, in summer and winter rangelands. It can be concluded that while the fuzzy TOPSIS model and GIS can be used to gain a better understanding of VA, the type of rangeland has an impact on how well these techniques can assess the SEV of rangelands.  相似文献   

16.
Desertification in the Sahel: a reinterpretation   总被引:4,自引:0,他引:4  
The impact of human management, in particular livestock grazing, on the vegetation cover of the Sahel is still debated. In a range of studies, satellite images have been used to analyze the development of the Sahelian vegetation cover over time. These studies did not reveal any significant degradation of the Sahel in the last two decades. In this paper, we examine the ecological assumptions underlying the use of satellite imagery to analyze degradation of the Sahel. Specifically, we analyze the variability of the rain‐use efficiency (RUE), which is often used as an indicator for the state of the vegetation cover. We detect a fundamental flaw in the way RUE has been handled in most remote sensing studies; they ignored the relation between annual rainfall variation and RUE. Because of the upward trend in annual rainfall that occurred during the 1980s and 1990s, this leads to a bias in the interpretation of the satellite images. In this paper, we show the importance of the variability in RUE for the analysis of remote sensing imagery of semiarid rangelands. Our analysis also shows that it is likely that there has been anthropogenic degradation of the Sahelian vegetation cover in the last two decades. This has important consequences for the debate on the impacts of grazing on semiarid rangelands. Furthermore, the occurrence of anthropogenic degradation is relevant to explain the magnitude of 20th century Sahelian droughts. The analyses also indicate that the population of the Sahel may be more vulnerable for droughts than currently assumed.  相似文献   

17.
本文将定位研究与路线考察相结合,将放牧影响下草原的动态演替及其在牧压梯度上的空间变化相对比,研究了内蒙古主要草原草场的放牧退化模式,并在此基础上初步探讨了判别草场退化的数量指标和退化监测专家系统。1)植物种与牧压关系的分析,区别出放牧的定性和定量指示植物及宜中牧植物,并划分植物为不同的放牧生态种组。2)退化草原恢复过程的研究表明,根茎禾草的恢复快于丛生禾草;群落恢复过程是单稳态的,且恢复演替动态与其牧压梯度上的空间变化相对应。3)内蒙古高原主要草原草场在持续放牧影响下均趋同于冷蒿(Artemisia frigida)草原。冷蒿是最可靠的正定量放牧指示植物,但同时又是优良牧草和草原退化的阻击者。4)讨论了草原草场退化的概念,论述了草原逆向演替与草场退化的区别和联系,提出了区分草原的逆向演替为草场熟化和退化两个过程,并依草场群落与牧压的关系建立了判定草场是否退化及退化程度的数量指标。5)初步设计了草原草场退化监测—决策专家系统,包括监测、判别和决策三个步骤。  相似文献   

18.
We present an ecological framework for considering ecosystem degradation and restoration, particularly in rangelands and arid environments. The framework is a synthesis of three conceptual models previously developed by several rangeland and restoration ecologists. We focus first on distinctions and connections between structural and functional components of rangeland ecosystems and then on distinctions and connections between biotic and abiotic components of the ecosystem. We next show that the structural/functional and biotic/abiotic distinctions can be integrated with a stepwise, positive feedback model of degradation to help explain degradation processes and restoration approaches. Finally, we relate those concepts to a threshold model of rangeland degradation. By establishing the conceptual links among these different models, this synthesis provides a broader, more integrated framework for thinking about the dynamics involved in rangeland degradation and restoration. We conclude by presenting some approaches to restoration that are motivated by the suite of concepts that are brought together in the framework.  相似文献   

19.
Livestock grazing is one of the main causes of rangeland degradation in Saudi Arabia. Fencing to exclude grazers is one of the main management practices used to restore vegetation and conserve biodiversity. The main objectives of this study were to investigate the changes in plant diversity and abundance, floristic composition and plant groups of the major life forms in response to thirty-five years of grazing exclosure in western Saudi Arabia. These vegetation attributes and palatability were compared in 30 sampling stands located in the excluded and grazed sites. Our results showed that livestock exclusion significantly increased covers, density and species richness of annuals, grasses, perennial forbs, shrubs and trees. Exclosure enhanced the abundance and richness of palatable species and depressed the development of weedy species. About 66.7% of the recorded species at the excluded site were highly palatable compared to 34.5% at the grazed site. In contrary, about 55.2% unpalatable species were found in the grazed site compared to 25.8% in the protected site. Jaccard’s similarity index between the excluded and grazed sites showed lower values of 0.39%, 0.40% and 0.31% at levels of families, genus and species, respectively. The results suggest that establishing livestock exclusion may be a useful sustainable management tool for vegetation restoration and conservation of plant diversity in degraded rangelands of arid regions.  相似文献   

20.
Increasing frequency of drought and high herbivore pressure significantly affect individual grass functions in semiarid regions. Reseeding of degraded rangelands by native grass species has been recommended as a tool for restoration semiarid rangelands. However, how grass species used for reseeding respond to stressors has not been fully explored. We examined biomass allocation and nutrient contents of Cenchrus ciliaris and Chloris gayana in the semiarid Borana rangelands, Ethiopia. We tested clipped mature tufts of the same species for biomass allocation and nutritive values. Further, shifts in rainfall and herbivory were simulated by three irrigation and four clipping treatments, respectively, for newly established grasses in pot and field plot experiments. Aboveground biomass (AGB) significantly declined by up to 75% under increased clipping in mature tufts. In contrast, clipping significantly stimulated up to 152% higher AGB of newly established grasses. Lower irrigation reduced the AGB by 24 and 42% in C. ciliaris and in C. gayana, respectively. Clipping, further, significantly enhanced grass nutrients in grass tufts by up to 82 and 105% in C. ciliaris and C. gayana, respectively. Hence, management should focus on balancing this trade-off in mature grasses for nutritious rangeland production by clipping and storing for later supplemental feeding when grass nutrients drop. Further, young pastures should be moderately clipped/grazed for better establishment and biomass allocation. Additionally, our experiments established the first interactive effect of clipping and irrigation frequencies on the biomass allocation of native grasses in the semiarid Borana rangelands, Ethiopia. Knowledge of these interacting factors is deemed essential for policy makers to enhance productivity of degraded rangelands such as the Borana rangelands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号