首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigation of the zooplankton community in the upstream part of Stratos reservoir during a 24 months survey (September 2004–August 2006) revealed 26 invertebrate species (14 rotifers, 6 cladocerans, 5 copepods and one mollusk larva). The mean abundance of the total zooplankton was higher in the first sampling period (2004–2005) and ranged between 8.81 and 47.74 ind. L−1, than the second period (2005–2006) when fluctuated between 1.91 and 43.09 ind. L−1. The seasonal variation was strongly influenced by the presence of rotifers, which accounting on average for 68.4% in total. Among them Keratella cochlearis and the order Bdelloidea were numerically the most important, while Macrocyclops albidus prevailed among the copepods and Bosmina longirostris among the cladocerans. Dreissena polymorpha was the only mollusk found in the zooplankton community. Rotifers, copepods and cladocerans showed a seasonal succession with the former preceding in the abundance having their first maximum in spring, while copepods and cladocerans followed, having peaks of abundance in early summer and in autumn, respectively. No seasonal succession among the cladoceran species was observed. The intense water flow in the upstream part of the reservoir, as well as temperature, conductivity, DO, pH, phosphates and silicates, were significant parameters controlling abiotic and biotic elements of the ecosystem and consequently influencing the seasonal variation and the dynamics of the zooplankton community.  相似文献   

2.
Community level effects of predation by two invertebrate predators, the opossum shrimp (Neomysis intermedia), and the larva of the phantom midge (Chaoborus flavicans) were studied and compared. N. intermedia appeared abundantly in the shallow eutrophic Lake Kasumigaura and had a significant impact on the zooplankton community. The predation pressure by Neomysis was highest on cladocerans, followed by rotifers, and finally copepods. At high densities (maximum nearly 20 000 individuals m–2), Neomysis excluded almost all cladocerans, rotifers and copepods from the lake.Zooplankton communities were established in experimental ponds, into which C. flavicans was introduced. The predator's density was around 1 individual l–1, and was probably controled by cannibalism. Although Chaoborus larvae feed on various zooplankton species, their predation impact on zooplankton populations was markedly selective. They eliminated medium- and small-sized cladocerans and calanoid copepods from the ponds, but rotifers increased.Although the feeding selectivities of Neomysis and Chaoborus individuals were similar, the predation effects on zooplankton communities by the two predators were different.  相似文献   

3.
Summary A zooplankton community was established in outdoor experimental ponds, into which a vertebrate predator (topmouth gudgeon: Pseudorasbora parva) and/or an invertebrate predator (phantom midge larva: Chaoborus flavicans) were introduced and their predation effects on the zooplankton community structure were evaluated. In the ponds which had Chaoborus but not fish, small- and medium-sized cladocerans and calanoid copepods were eliminated while rotifers became abundant. A large-sized cladoceran Daphnia longispina, whose juveniles had high helmets and long tailspines as anti-predator devices, escaped from Chaoborus predation and increased. In the ponds which had fish but not Chaoborus, the large-sized Daphnia was selectively predated by the fish while small-and medium-sized cladocerans and calanoid copepods predominated. In the ponds containing both Chaoborus and fish, the fish reduced the late instar larvae (III and IV) of Chaoborus but increased the early instar larvae (I and II). Small- and large-sized cladocerans were scarcely found. The former might have been eliminated by predation of the early instar larvae of Chaoborus, while the latter was probably predated by fish. Consequently, the medium-sized cladocerans, which may have succeeded in escaping from both types of predator, appeared abundantly. The results suggest that various combinations of vertebrate and invertebrate predators are able to drive various kinds of zooplankton community structure.  相似文献   

4.
Synopsis Feeding habits of juvenile alewife, A. pseudoharengus, blueback herring, A. aestivalis, and American shad, Alosa sapidissima, were examined over a 24 h period at an inshore location on the lower Hudson River. Feeding periodicity differed by species: alewives showed no diel differences, whereas shad fed least intensively near dawn and herring least intensively at night. Alewives fed primarily on chironomids and the amphipod Corophium lacustre, shad on Formicidae and larval chironomids, and herring on chironomids and copepods. Diel variation in prey selection was evident. Dietary overlap was generally greatest between alewife and herring and least between shad and herring.  相似文献   

5.
Synopsis Stomach contents of anadromous alewives, Alosa pseudoharengus and blueback herring, A. aestivalis, obtained from brush weir and drift net collections in Minas Basin, N.S., were examined. Diets showed much overlap in terms of resource use, but the dietary importance of major prey categories differed substantially between species. Alewives favoured larger, more benthic prey (e.g. amphipods, mysids and crangonids), while blueback herring appeared to concentrate their feeding on microzooplankters (e.g. calanoid copepods, cypris larvae and molluscan veligers). Interspecific differences in diet composition are largely attributed to the planktivorous feeding habits of small (81–155 mm fork length) blueback herring. Differences in prey suggest that alewives utilize a particulate feeding strategy while blueback herring are predominantly filter-feeders. Although competition for food in the Basin seems unlikely since high secondary production yields a superabundance of prey, differences in feeding behaviour between younger, smaller individuals of both species could be a means of avoiding competitive interactions in an environment where there are space/access limitations imposed by the tidal cycle.  相似文献   

6.
Synopsis Food consumption of perch larvae and the impact of this on zooplankton were examined in two adjacent shallow Scottish lochs. Maximum annual abundance of zooplankton occurred in mid-May at L. Kinord with minimum values in mid-June. Copepods were prominent in spring but were followed by a multi-species community of cladocerans and rotifers in summer. At L. Davan zooplankton biomass remained high through summer with cladocerans dominating andDaphnia longispina the most frequent species. Availability of food items was a principal factor governing feeding behaviour of larvae. Copepodite stages were initially the most common item in the diet in L. Kinord in 1976 and 1977 and rotifers the principal food in June 1977, reflecting the dominance of these items in the zooplankton. Cladocerans were dominant in the plankton community in L. Davan and constituted the greater part of food intake. Overlying this general pattern there was an increase in the size of food items taken by larvae with time and also a definite pattern of food selection for copepods, with initially selection for smaller copepodite stages and later for larger stages and adults. On most occasions larvae selected forCyclops strenuus abyssorum andPolphemus pediculus and selected againstDaphnia longispina. The reduction in the total zooplankton biomass attributed to perch larvae was minimal, with the exception of mid-June at L. Kinord in 1976. However, predation on particular species and copepodite stages was occasionally intense and may have impacted the zooplankton populations.  相似文献   

7.
J. Green 《Hydrobiologia》2007,593(1):5-12
Keratella cochlearis was present in 27 of 35 water bodies sampled in Myanmar, and was the most abundant rotifer in 10. Measurements of lorica length and posterior spine length from 20 localities showed that posterior spine length varied both with lorica length and with the composition of the crustacean zooplankton. Long spines were associated with dominance by Heliodiaptomus. The shortest spines were found in samples dominated by cladocerans or cyclopoid copepods. Posterior spine length was positively correlated with the number of diaptomid copepods. Forms without posterior spines were found in 17 localities. The lorica lengths of these spineless forms were generally similar to those of co-occurring spined forms (r = 0.68), but in a few samples the loricas of the spineless forms were significantly larger. These larger forms are similar to the ‘aspina’ forms recently recognised in the River Thames in England. These samples were dominated by cladocerans or cyclopoid copepods. In one locality spineless forms were found without spined forms. The crustacean zooplankton in this locality was also dominated by cladocerans. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont & R. Rico-Martínez Advances in Rotifer Research  相似文献   

8.
The consumption of zooplanktonic organisms by young and adult fish of Astyanax fasciatus in Lobo Reservoir was studied from October 1978 to September 1979 by analysing the abundance of zooplankton in the gut of fishes and relating it to the variation of the zooplankton community in the lake. To analyse the diet the following methods were used: numeric frequency of occurrence, and frequency rate. Astyanax fasciatus showed a large spectrum of feeding. The young stage feeds mainly on zooplankton and macroinvertebrates (insect larvae) but the adults also consume algae and detritus. Even in relation to the zooplankton the young stage showed a food preference different from that of the adults, selecting copepods over cladocerans, while the adults consumed more cladocerans.  相似文献   

9.
Zooplankton species composition and abundance variation was studied in Lake Amvrakia, which is a deep, temperate, gypsum karst lake situated in the western Greece. The two year survey of zooplankton revealed 33 species (23 rotifers, five cladocerans, four copepods and one mollusc larva). The mean integrated abundance of the total zooplankton ranged between 83.6 and 442.7 ind. L−1, with the higher density to be recorded in the surface 0–20 m layer. Small numbers of specimens of almost all species were found also in the hypoxic or anoxic hypolimnion. Copepods and especially the calanoid Eudiaptomus drieschi dominated the zooplankton community throughout the sampling period, followed by Dreissena polymorpha larvae, rotifers and cladocerans. Seasonal succession among the cladocerans and the most abundant rotifer species was observed. The concentration of chlorophyll-a was the most important factor for the variation of total zooplankton, as well as for the rotifers’ community. Dissolved oxygen affected copepods and cladocerans, water level correlated mainly with the molluscs larvae of D. polymorpha, while temperature influenced the variation of several rotifers, the cladoceran Diaphanosoma orghidani and the mollusc larvae. Negative correlation of conductivity with the cladoceran Daphnia cucullata and the copepods E. drieschi and Macrocyclops albidus was found. The differences in species composition found in Lake Amvrakia in comparison to the nearby lakes are probably ought to the geographical isolation and perhaps to its particular chemistry (e.g., elevated conductivity).  相似文献   

10.
Self-organizing maps, otherwise known as Kohonen-maps, are one form of unsupervised artificial neural networks that can produce two-dimensional plots from multidimensional data. This tool is especially useful in community pattern analyses and has been previously used in spatial pattern analysis with different perspectives. The present study aims to find zooplankton's community pattern in the Bakreswar reservoir ecosystem. Bakreswar reservoir is a freshwater ecosystem in the Birbhum district of West Bengal, India. The reservoir is primarily used to supply freshwater to the Bakreswar thermal power plant. However, the local villages around the reservoir depend on it for drinking water and fishing sustenance. The data used in this study was collected over two years from three different stations. Thus, in addition to describing the spatial pattern of community distribution of zooplankton groups, the temporal variation was also studied. It is observed in the study that the four major groups of zooplankton – Copepoda, Cladocera, Ostracoda, and Rotifera – react differently to the different environmental attributes. Primarily directed by the physical environmental factors, the effect of the chemical factors on the patterning is also evident from the study. Copepods are the dominant group in the system, closely followed by cladocerans and rotifers. But this observation changes at different stations and throughout the study period. The temperature profiles of the reservoir primarily direct the occurrence of ostracods and rotifers, whereas cladocerans and copepods are inclined more towards a chemical factor directive. Rotifers are dominant in the monsoon, whereas the post-monsoon and winter seasons show an increased presence of copepods and cladocerans. The overall observation that the reservoir's water quality is good, and the trophic structure is healthy is in accordance with previous studies as well.  相似文献   

11.
1. In a series of whole-lake manipulations conducted from 1984 to 1991, planktivorous fishes were alternately removed and restocked in a small mesotrophic lake, resulting in dramatic changes in the zooplankton community. 2. Response patterns in the zooplankton community, which include species and size structure, and within-year community variability, were examined. Variation in the zooplankton community in unmanipulated years was much lower than that in manipulated years, regardless of direction of the manipulation (i.e. decreasing or increasing planktivory). 3. The succession of zooplankton species abundance was repeated in the second removal of planktivorous fishes. The community shifted from small-bodied cladocerans, copepods and rotifers, through an intermediate state with high abundance of Holopedium, to an assemblage dominated by large-bodied daphnids.  相似文献   

12.
This article describes the peculiarities of the structural organization of zooplankton influenced by the waste products of the black-headed gull (Larus ridibundus Linnaeus) nesting colony in the protected overgrown shallow in Rybinsk Reservoir. The bird colony facilitates a modification of the zooplankton structure that is similar to the modifications of communities at early stages of eutrophication: the number of invertebrate species increases thanks to rotifers and cladocerans and the number and biomass of community increases due to cladocerans and copepods.  相似文献   

13.
In Lake G»rdsjön (Southwest Sweden), liming as an experimental improvement of living conditions for pelagic algae, resulted in a significant increase of algal biomass and a reduction of mean cell size. The algal development was beneficial for small sized filter feeding zooplankton, particularly rotifers, which showed a significant increase. The increase in abundance of small sized zooplankton created better food conditions for the smaller instars, and thus a much better overall survival of Chaoborus larvae. The resulting, 6–7 times larger population of Chaoborus larvae significantly changed the structure of the crustacean zooplankton community. Bosmina coregoni, the fastest swimmer of the crustacean species suffered most and was strongly reduced by the increased predation from Chaoborus. The share of cladocerans decreased, while copepods increased in importance.  相似文献   

14.
Kotta  Jonne  Simm  Mart  Kotta  Ilmar  Kanošina  Inga  Kallaste  Kalle  Raid  Tiit 《Hydrobiologia》2004,514(1-3):259-268
Phytoplankton, mesozooplankton, mysids and fish larvae were studied during 15–29 annual cycles measured weekly to monthly in Pärnu Bay, the Gulf of Riga. The monthly variability of the biological data was related to temperature, ice conditions, salinity, influx of nutrients, the North Atlantic Oscillation (NAO) index, cloudiness and solar activity. Phytoplankton development was mainly a function of the NAO index. For the whole study period the abundance of zooplankton increased with increasing water temperature and solar activity. Significant correlations between phytoplankton and zooplankton densities were found until 1990. After the invasion of the predatory cladoceran Cercopagis pengoi in 1991, the zooplankton community was likely to be regulated by the introduced species rather than phytoplankton dynamics. The increased abundances of rotifers and copepods triggered the increase in mysid densities. The development of herring larvae was positively affected by the high density of copepods and rotifers but also by increased eutrophication. Until 1990 there was no significant relationship between the density of zooplankton and herring larvae. A negative relationship between the density of zooplankton and herring larvae in the 1990s suggests that the major shift in zooplankton community resulted in food limitation for herring larvae. The results indicated that (1) atmospheric processes in the northern Atlantic explain a large part of the interannual variation of the local phytoplankton stock, (2) trophic interactions control the development of pelagic communities at higher trophic levels, and (3) the introduction of an effective intermediate predator has repercussions for the whole pelagic food web in Pärnu Bay.  相似文献   

15.
Degans  Hanne  De Meester  Luc 《Hydrobiologia》2002,479(1-3):39-49
Biomanipulation, through the reduction of fish abundance resulting in an increase of large filter feeders and a stronger top-down control on algae, is commonly used as a lake restoration tool in eutrophic lakes. However, cyanobacteria, often found in eutrophic ponds, can influence the grazing capacity of filter feeding zooplankton. We performed grazing experiments in hypertrophic Lake Blankaart during two consecutive summers (1998, with and 1999, without cyanobacteria) to elucidate the influence of cyanobacteria on the grazing pressure of zooplankton communities. We compared the grazing pressure of the natural macrozooplankton community (mainly small to medium-sized cladocerans and copepods) with that of large Daphnia magna on the natural bacterioplankton and phytoplankton prey communities. Our results showed that in the absence of cyanobacteria, Daphnia magna grazing pressure on bacteria was higher compared to the grazing pressure of the natural zooplankton community. However, Daphnia grazing rates on phytoplankton were not significantly different compared to the grazing rates of the natural zooplankton community. When cyanobacteria were abundant, grazing pressure of Daphnia magnaseemed to be inhibited, and the grazing pressure on bacteria and phytoplankton was similar to that of the natural macrozooplankton community. Our results suggest that biomanipulation may not always result in a more effective top-down control of the algal biomass.  相似文献   

16.
Summary Field distribution patterns and laboratory feeding experiments have suggested that blooms of colonial blue-green algae strongly inhibit relatively large-bodied daphnid cladocerans. We conducted laboratory experiments to test the hypothesis that blooms of the colonial blue-green alga Microcystis aeruginosa would shift competitive dominance away from large-bodied daphnid cladocerans toward smaller-bodied cladocerans, copepods, and rotifers. In laboratory competition experiments, increasing the proportion of M. aeruginosa in the algal food supply resulted in a shift from dominance by the relatively largebodied cladoceran Daphnia ambigua to dominace by the copepod Diaptomus reighardi. The small-bodied cladoceran Bosmina longirostris was always numerically heavily dominant over D. ambigua, but its estimated population biomasses were only slightly higher than those of D. ambigua. Daphnia ambigua consistently outcompeted the rotifer Brachionus calyciflorus. Our results demonstrate that blooms of M. aeruginosa can alter zooplankton competitive relations in laboratory experiments, favoring small-bodied cladocerans and copepods at the expense of large-bodied cladocerans. However, contrary to predictions, blooms of M. aeruginosa did not improve the competitive ability of rotifers.  相似文献   

17.
The impact of Pseudorasbora parva, a common zooplanktivorous fish species in Japan, on a zooplankton community was analyzed in experimental tanks, half of which were stocked with the fish. Different zooplankton species showed different responses to the introduction of the fish. In the presence of the fish, the populations of the large cladoceran Ceriodaphnia and the predatory copepod Mesocyclops were reduced, but the population of the herbivorous copepod Eodiaptomus and the small cladocerans Bosmina fatalis and Bosminopsis deitersi increased relative to the controls. The increase of Mesocyclops seen in the control tanks might have suppressed the populations of the small cladocerans, which are vulnerable to invertebrate predation. The results suggest that the population densities of the large prey items preferred by the fish, Ceriodaphnia and Mesocyclops, were controlled directly by fish predation, but the population densities of the smaller and less preferred zooplankton were controlled indirectly through the food-web cascade.  相似文献   

18.
Zooplankton samples were collected from 49 small reservoirs of northern Ivory Coast in April 1997. Thirty taxa were identified, including 20 rotifers, 3 copepods and 6 cladocerans. The number of taxa per lake ranged between 12 to 22 and decreased with the total abundance of zooplankton. Copepods dominated standing biomass. Coinertia analysis suggested the role of seston food abundance, oxygen depletion and turbidity for zooplankton abundance and community structure. Rotifers, and particularly Brachionus angularis, Polyarthra and Filinia, were more abundant than copepods in the most eutrophic, turbid and deoxygenated reservoirs. The role of oxygen as a determinant of community structure is probably linked to the specific tolerance of taxa, but turbidity role could not be evaluated with certainty in the absence of information on visual predators.  相似文献   

19.
S. Sendacz 《Hydrobiologia》1984,113(1):121-127
The composition of the zooplankton of the Billings Reservoir and its variation in an eutrophic environment, subject to frequent blooms of algae (chiefly Cyanophyceae) was studied during one year (from October, 1977 to September, 1978) in two stations in the littoral and in the limnetic zone.The zooplankton community in the limnetic zone was dominated by cyclopoid copepods (Thermocyclops crassus and Metacyclops mendocinus) and by rotifers (Brachionus, Polyarthra and others) which represented, respectively 38.5 and 35.5% of the total zooplankton. At the littoral zone, cyclopoids were the most abundant (42.3%).The cladocerans were the least significant group at both stations, and calanoid copepods were found only at the littoral zone.A higher production of small filtrators, such as rotifers, cyclopoid nauplii and Bosmina sp was observed.  相似文献   

20.
1. Based on two mesocosm experiments and 10 in vitro predation experiments, this work aimed to evaluate the impact of nutrient supply and Chaoborus predation on the structure of the zooplankton community in a small reservoir in Côte d'Ivoire. 2. During the first mesocosm experiment (M1), P enrichment had no effect on phytoplankton biomass (chlorophyll a) but significantly increased the biomass of some herbivorous zooplankton species (Filinia sp, Ceriodaphnia affinis). During the second experiment (M2), N and P enrichment greatly increased phytoplankton biomass, rotifers and cladocerans (C. affinis, C. cornuta, Moina micrura and Diaphanosoma excisum). In both experiments, nutrient addition had a negative impact on cyclopoid copepods. 3. Larger zooplankton, such as cladocerans or copepodites and adults of Thermocyclops sp., were significantly reduced in enclosures with Chaoborus in both mesocosm experiments, whereas there was no significant reduction of rotifers and copepod nauplii. This selective predation by Chaoborus shaped the zooplankton community and modified its size structure. In addition, a significant Chaoborus effect on chlorophyll a was shown in both experiments. 4. The preference of Chaoborus for larger prey was confirmed in the predation experiments. Cladocerans D. excisum and M. micrura were the most selected prey. Rotifer abundance was not significantly reduced in any of the 10 experiments performed. 5. In conclusion, both bottom‐up and top‐down factors may exert a structuring control on the zooplankton community. Nutrients favoured more strictly herbivorous taxa and disadvantaged the cyclopoid copepods. Chaoborus predation had a strong direct negative impact on larger crustaceans, favoured small herbivores (rotifer, nauplii) and seemed to cascade down to phytoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号